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Abstract

This thesis documents the architectural theory in adding new high
availability requirements to an existing highly distributed Java based wind
farm Supervisory Control and Data Acquisition (SCADA) system. A soft
real-time system with an architecture that was originally designed with
performance as the main architectural driver.

Based on the theory three different prototypes have been build, each
using a different path to reach the same goal. One using an active redun-
dancy tactic with network multicast, one using passive redundancy using
distributed shared memory (DSM) and finally one prototype build upon
the end-to-end principle.

To test how the three prototypes performs when applied to the SCADA
system, a test bench using virtual machines has been build running on the
Amazon Elastic Compute Cloud (EC2) computing platform. This test
bench made it possible to evaluate the three prototypes in a realistic way
running on a distributed system with 18 nodes without a big hardware
setup.

The tests revealed that the DSM based prototype failed in fulfilling
the new requirements. The prototype based on network multicasts was
almost successful, with some minor bugs that will need additional work.
Finally the end-to-end based prototype was very successful in adding the
new availability requirements.
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1 Motivation

An often used architectural style in distributed systems is some variant over the
classical client-server architecture, where a single server serves a multitude of
clients. A stylistic example of such an architecture is shown in figure 1. As it is
seen all communication paths in the system goes through the single server node,
making this a critical single point of failure.

:Server:Client

:Client

:Client

Figure 1: The client-server architec-
ture with a single server.

:Server

:Client

:Client

:Client

:Server

Group

Figure 2: Redundancy in the client-
server architecture.

For systems where the clients are unable to perform the required business
logic of the system if the server node is unavailable, an architecture like this is of
course extremely fragile, since a breakdown of the central node will have severe
consequences on the availability of the entire system. An extreme example of
such a system is the original client-server architectures using a central mainframe
and terminals as clients, where all processing stops if the central mainframe is
unavailable.

In systems where high availability is necessary it will therefore often be
necessary to introduce some kind of redundancy of the central server node.
A list of potential architectural availability tactics for so called fault recovery
is described in [Bass et al., 2003, ch.5.2]. For distributed systems this spans
from tactics with no downtime like voting and active redundancy, over short
downtime tactics like passive redundancy to tactics with longer downtime like
having a standby spare system. In this thesis the focus is on the online no
downtime tactics.

For client-server systems with simple communication patterns, where the
protocols used are stateless, and the role of the server node is simply to process
and respond to individual idempotent client operations, it is relatively straight-
forward to introduce redundancy. This can simply be done by adding several
server nodes, and using some kind of routing layer to make it transparent to
the application logic in the clients, which one of the several server nodes are
actually used. A stylistic view of a system with such a group of server nodes is
depicted in figure 2.

Unfortunately the complexity of introducing several server nodes grows when
the communication patterns and protocols has states and steps, and models
some kind of longer relationship between the client and server nodes. Examples
of such communication patterns are:
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� Distributed transactions.

� Asynchronous remote method invocations - i.e. with callbacks.

� Subscription based protocols, e.g. a distributed version of the observer
pattern ([Gamma et al., 1995]).

In the case of such stateful systems some kind of communication between the
server nodes are necessary, which is shown as the communication link between
the two example server nodes in figure 2.

In the academic world the theory of high availability systems is a well de-
scribed problem, for which several solutions exists each with well defined the-
oretical limitations of what fault scenarios they will handle gracefully. In the
software industry when one as a practitioner needs to select between and apply
one of these high availability solutions to a system, the actual implementation
must occasionally be shoehorned onto an existing system as an after the fact
architectural requirement.

These after the fact situations typically occurs as a natural evolution of a
system when it transitions from being “just” an important standalone system,
to being a crucial infrastructure system that other systems depends on as being
highly available. A change of the systems role meaning that the architectural
requirements for the system suddenly will include high availability requirements.

The following section gives a high level overview of a real-world stateful
client-server system where this evolution into a high availability system is re-
quired. The requirement of bolting on high availability of the central server
node in this system, is exactly what was the motivation for this thesis.

1.1 The Distributed Wind Farm

The distributed wind farm system that acts as the case system for the theory
in this thesis, is depicted in an informal rich picture notation in figure 3 on
the following page. This picture shows the nodes in an anonymous supervisory
control and data acquisition (SCADA) system for monitoring and management
of wind turbines in a wind farm. This is a typical example of a distributed
industrial control system where client access to sensors and actuators on several
physical units (here wind turbines) takes place through a single central server,
in this case labelled the wind farm server.

One of the functionalities in the actual system is that client applications can
subscribe to receiving soft real-time values from one or more wind turbines, or
in more formal sentences:

To monitor soft real-time values for a client specified list of sensors in
a turbine. The soft deadline for the periodic readings is one second.

To fulfill the performance aspects of this requirement it has been necessary for
the system to avoid sending lots of unchanged sensor readings through the sys-
tem from the turbines, over the central wind farm server to the clients. Where-
fore the distributed communication has been implemented using a distributed
version of the standard observer pattern in the push variant1 using remote pro-

1See [Gamma et al., 1995] for detailed treatment of the observer pattern and the difference
between the push and the pull model. Basically in the push model the notification-messages
contains details about the actual changes (e.g. such as the new value of a sensor), whereas in
the pull model the messages only informs the subscriber that a value has changed.
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Wind Farm

Server

Client

Client

Client

External Integration

System

Wind Turbine Node

Wind Turbine Node

Wind Turbine Node

Figure 3: Informal overview of the wind farm SCADA system.

cedure calls (RPC).
To further minimize the network traffic in the system, the central wind

farm server acts as a subscription multiplexer, combining several client system
subscriptions for the same sensor value, into only one subscription on the target
wind turbine node. Unfortunately this mechanism leads to quite some protocol
housekeeping state being introduced in the central node, making it harder to
introduce redundancy of the central node in a simple way as this state will have
to be distributed to the redundant copies of the central node.

The central mechanism in this distributed observer pattern is depicted in
figure 4 on the next page where the wind farm server acts as a stateful for-
warding observer2 of events from the turbine nodes to the end clients. For this
introduction to the problem, the reader is urged to overlook the fact that the
wind farm server in the figure does not actually forward events to the clients.
Instead the client actively polls the wind farm server for changed values. This
is due to some limitations in the technology used in the system, and will be
explained in depth in later chapters when the system is analysed in depth.

Besides the central mechanism in the system, the figure also shows the prob-
lem in increasing the overall system availability by naively adding additional

2See [Coulouris et al., 2005, ch. 5.4.1] for a description of the nomenclature used in dis-
tributed event systems. A forwarding observer basically acts as a subscriber for events on
behalf of the actual subscriber(s), and therefore forwards event notifications to the end sub-
scriber(s).
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:Client
:Wind Farm 

Server 1

:Wind Farm 

Server 2
:Turbine Node

read(token)

{ value = 3.1415 }

read(token)

{ value = 2.7182 }

read(token)

{ failure = unknown token }

subscribe(sensor1)
attach(observer=server 1, interest = sensor1)

{ token }

notify(sensor1 = 3.1415)

notify(sensor1 = 2.7182)

Figure 4: Stateful observer pattern.

wind farm server nodes (a redundant node labelled wind farm server 2 is de-
picted in the figure). Due to the state present in the wind farm server 1, the
second server is unable to handle the final client read(token) call depicted on the
figure due to at least two obvious factors:

Unknown client token: The client token and the session it represents are
unknown on the second server if no additional communication is added to
the system.

No notifications to server 2: Since the second server node has not attached
itself as an observer for the relevant sensors on the turbine node it naturally
does not receive any notification messages.

1.2 The Aim of the Thesis

Based on the introduction of the wind farm SCADA system in the previous
chapter, the aim of this thesis is to do a high level exploration of what kind of
theoretical solutions are applicable for transforming the existing system into a
highly available system where the central wind farm server node is no longer
a single point of failure. This of course includes introducing redundancy of
this central node, but increasing availability requires more than just redundant
nodes, as best described in the quote by Bass et al.:

All approaches to maintaining availability involve some type of re-
dundancy , some type of health monitoring to detect a failure,
and some type of recovery when a failure is detected.

[Bass et al., 2003, ch.5.2]

Based on this theoretical exploration, it is the plan to apply several types of so-
lutions to a working model of the distributed wind farm architecture, to analyze
how suitable they are.
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The work described in this thesis should therefore hopefully both act as a
learning vehicle for the author, and for the reader, it should act as a catalog of
ideas for how to attack the problem of introducing redundancy in systems with
a similar distributed architecture and similar architectural qualities as described
in chapter 2. Furthermore it is the aim to build a test bench that can be used
for testing solutions for distributed systems with many nodes like the wind farm
SCADA system in a virtual environment.

1.3 Problem Statement

The problem statement for the work described in this thesis is:

To analyse how the theoretical high availability tactics can be ap-
plied to the distributed wind farm SCADA system as an evolution of
the existing system. Based on this analysis, to apply several of these
theories as architectural prototypes on a model of the distributed
wind farm system. And finally, to evaluate the suitability of the
applied solutions.

A couple of the terms in this compact statement might need a few additional
words, for a concise definition of what they mean in the context of this thesis:

Distributed wind farm SCADA system: The specific system introduced
in the motivation for this thesis. See chapter 1.1. A simplified model
of this system, described in chapter 2, will be used in this work.

Evolution of existing system: As the system has already been running for
a long period (approaching it’s 10 years anniversary) it is an important
factor in the analysis of the suitability of the different tactics, to consider
how they can be applied to the existing system as an evolutionary change
instead of a revolutionary change, i.e. as well as weighting the availability
characteristics of the different solutions, the ease of how the solution can
be “bolted on” to the existing system must be taking into account when a
solution is evaluated.

Architectural prototype: A running prototype of limited parts of a system
build to explore and evaluate a given architecture, or as described by
[Bardram et al., 2004] “... a learning and communication vehicle used to
explore and experiment with alternative architectural styles, features, and
patterns in order to balance different architectural qualities”.

1.4 Delimitations

As the thesis work is based upon finding solutions for a specific system, there
are certain natural assumptions and delimitations for what this work will cover:

Java based: The specific system under analysis is a Java based system. There-
fore the implementation part of this thesis will be done using the Java
platform.

No Transactions: The wind farm SCADA system is of a nature where dis-
tributed transactions are not relevant. So, although distributed trans-
actions are a very relevant problem in certain systems when introducing
redundancy, it will not be covered in this work.
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1.5 Overview of the Thesis

The thesis starts out in chapter 2 with a detailed architectural description of
the case system used in the thesis. The chapter ends with a formal description
of the availability requirements that must be added to the system in chapter
2.5.

Thereafter the relevant theory on adding availability to a distributed system
is described in chapter 3, followed by chapter 4 describing how the theory is
applied to the actual wind farm SCADA system.

Chapter 5 and 6 then describes the 3 prototypes that has been build, each
using a different technology for adding redundancy to the system:

� A passive redundancy solution using so called distributed shared memory
(DSM). This is build using the software product [Terracotta] (chapter 6.2).

� An active redundancy solution using network multicast communication.
This is build using the software product [Hazelcast] (chapter 6.3).

� A solution using the so called end-to-end principle with “soft state” at the
wind farm server nodes (chapter 6.4).

Chapter 7 describes a setup for testing the 3 prototypes in a realistic scenario
with 18 nodes. As it is expensive and cumbersome to setup and maintain a test
laboratory with 18 physical nodes, the test bench uses virtual machines using
the Amazon Elastic Compute Cloud ([Amazon EC2]) computing platform.

Finally chapter 8 evaluates and compares the results of running the 3 pro-
totypes on the Amazon EC2 test bench.

2 The Distributed Wind Farm

The system used as case for this thesis, is the distributed wind farm SCADA
system briefly introduced in chapter 1.1. In this chapter the system is described
in closer details by describing the functional requirements and the architecture
of the existing system. After this the new architectural availability requirements
for the system are described.

2.1 Functional Requirements

Focusing on the core monitoring functionality of the wind farm system, the
central functional requirement of the system is:

To monitor soft real-time values for a client specified list of sensors in
a turbine. The soft deadline for the periodic readings is one second.

An elaboration of the terms used in this very concise sentence might be appro-
priate - the main goal is for clients (where “clients” can include other systems,
as well as end user clients) to be able to monitor values from a list of turbine
sensors. An example could be to monitor values for measured wind speed, power
production, gear temperature, and so on.

The term client specified list refers to the fact that it must be possible for
the clients to specify what sensor readings should be monitored. So the list of
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monitored sensors will change over time depending on what information clients
require.

The term soft real-time is used in the standard computer science way, mean-
ing that the system should expect and be tolerant to occasionally missed dead-
lines and deadlines that are missed with a small time period. In the context of
the wind farm system this means that the system is fulfilling this requirement
even if there are occasionally two seconds between a reading, or if the period
between two readings fluctuates around one second, sometimes exceeding the
one second deadline with for instance 100 milliseconds.

This is opposed to a hard real-time system where the system has a fault
if a single deadline is missed or exceeded. So the distinction between these
two types of systems, is basically that in a soft real-time system a response or
action that almost makes the deadline is still of at least some value, although
the value may be decreasing after the deadline is surpassed, whereas in a hard
real-time system the action or response is of no value if exceeding the deadline.
The classical examples of systems with hard deadlines includes systems where
human lives or health are at stake in case of failure, covering areas such as brake
systems in cars, fly-by-wire control systems for aircrafts or security mechanisms
in robots.

Finally the deadline of one second is actually depending on the latency
and bandwidth of the client-to-wind-farm-server link as depicted on figure 3
on page 9. This means that for systems where the end-to-end system should
be considered a soft real-time system the quality of this link must be evaluated
before committing to the one second deadline - this is typically the case where
the “client” is another system, doing for instance data acquisition or alarm mon-
itoring. This should be compared to more ad hoc end user client connections
over dial-in lines of varying quality - these are more to be seen as so called
interactive clients instead of soft real-time clients (in the taxonomy of system
response times described in [Burns & Wellings, 2001, ch.12.6] an interactive sys-
tem is a system where there are no real deadlines, but the goal is just to strive
for “adequate response times”).

2.2 Architectural Description of the Existing System

To describe the architecture of the existing distributed system, the larger ele-
ments and the relationships between these are described below in a traditional
viewpoint based way. As the architectural viewpoints the three viewpoints from
[Christensen et al., 2007]3 has been selected:

Module: Mapping the functionality onto static development units.

Component and Connector (C & C): Mapping the functionality onto run-
time components.

Allocation: Mapping the software entities onto the system“environment”(phys-
ical and logical hardware).

Since the intention of the architectural description in this case is to communicate
information on specific parts and properties of the system, lots of information
about the real system has been omitted to make the architectural structures
regarding the monitoring part under analysis clear.

3Who bases their work on the recommendations of [Clements et al., 2003].
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2.2.1 Component and Connector View

:OPC-Server

:Wind Turbine Service

OPC over COM

:Wind Farm Service

:Subscription 

Service

:Publish 

Service

:Sensor 

Reader

Subscribes

Notifies

:Client 

Subscription 

Service

:Client Publish 

Service

:Subscription 

Multiplexer

:Turbine 

Subscription 

Service

:Turbine 

Observer 

Service

Subscribes

over RMI

Notifies

over RMI

:Client

WS over HTTP

Client

Server

Client

Server
Server

Server

:Broadcast 

Server

:Broadcast 

Client

UDP

Broadcast

Discovery

Figure 5: Overall component and connector diagram.

Figure 5 shows the overall component and connector diagram. The proper-
ties of the individual components and connectors are listed below.

Client: The client component. As the internal of the different client types are
not central to this thesis, no decomposition of the different client types
has been done. It should be noted though that all communication between
clients and the wind farm service is initiated by the client. This includes
the “publishing” of changed data from the client publish service on the
wind farm service (i.e. due to the request-response properties of HTTP
this is implemented as one second pollings of the client publish service,
requesting changed data since last polling). This means that the so called
flow-control is the responsibility of the client.

Wind Farm Service: This is the service running on the central node (as is
later seen on the deployment diagram). This contains connections to all
wind turbine services in the system, using Java RMI as the communication
protocol, and connections to all clients, using web services over HTTP. It
contains the components listed below.

Client Subscription Service: A component exposing a subscription web ser-
vice used by clients to setup, change and teardown subscriptions for sensor
readings. One subscription can span over sensors from several turbines.
Each incoming client subscription change is forwarded to the subscription
multiplexer component for processing, and a unique subscription token is
returned to the client.

Subscription Multiplexer: The main stateful component on the wind farm
service. This keeps track of all client subscriptions, and multiplexes the
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subscription requests into only one active subscription for each wind tur-
bine service - i.e. one for each turbine. This component is not active in
itself, and its exposed data structures should be threadsafe as it is used
from threads in several components (e.g. the client subscription service
and turbine observer service writes data to this component, whereas the
turbine subscription service and client publish service reads data from this
component).

Turbine Subscription Service: This component regularly polls the subscrip-
tion multiplexer for changes to the subscription for the turbine it handles.
I.e. one instance of this component exists for each wind turbine service
in the overall system. This is the RMI stub end (client) of the remote
communication to the subscription service on one wind turbine service.

Turbine Observer Service: This is a RMI skeleton (server) that is notified
via callbacks when there are changed values for one or more sensors on the
wind turbine service it handles. So for each remote wind turbine service
there is an instance pair consisting of one { turbine subscription service ;
turbine observer service } handling communication to exactly one remote
service. The API exposed by this service is coarse grained, meaning that
batches of changed sensor values are received in one method call, instead
of individual sensor readings. The changed values are then updated in the
subscription multiplexer component.

Broadcast Server: A simple UDP server listening for UDP multicast messages
to a configurable port on the so called local segment multicast address
224.0.0.1. Basically it just replies with a simple echo message whenever a
client sends a broadcast message looking for a wind farm service.

Client Publish Service: This component also exposes a HTTP web service.
This is used when clients polls for changed data using the subscription
token received when the client requested a subscription using the client
subscription service.

Wind Turbine Service: This is the service running on each of the wind tur-
bine nodes in the system. This communicates with the central wind farm
service using RMI. It contains the components listed next.

Subscription Service: Exposes remote functionality for the turbine subscrip-
tion service on the wind farm service to manage sensor value subscriptions
on the connected wind turbine. I.e. the public part of this component is
exposed as an RMI skeleton (server).

Sensor Reader: This component contains logic for periodically scheduled read-
ing of subscribed sensor variables. Communication to the actual turbine
takes place using a standard protocol for industrial automation solutions,
called OLE for Process Control - Data Access (OPC DA) [OPC DA, 2003].
As the OLE part of the name implies this standard uses Microsoft’s binary
Component Object Model (COM) protocol for interprocess communica-
tion. Changes in the read sensor values are send as notification callbacks
to the publish service.
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Publish Service: The RMI stub end (client) of the turbine observer service
running on the wind farm service. Sensor value changes are sent as remote
notifications by this component.

Broadcast Client: A simple UDP client that matches the broadcast server on
the wind farm service. When the wind turbine service starts, this client
sends local network segment broadcast messages looking for a broadcast
server. When it receives a positive reply, it registers the different wind
turbine service components at the server. And afterwards it sends peri-
odically RMI keep alive calls to the server to detect an unavailable wind
farm service, in which case it will fall back to sending broadcast messages
again.

OPC-Server: A vendor specific implementation of the OPC DA standard for
communication with the actual sensors in the turbine. This component is
delivered by the vendor of the bus soft- and hardware used for communi-
cation in the turbine. So basically the OPC-server acts as a concentrator
or gateway to the signals and events on the bus systems in the turbine.

As described above there is a requirement that the communication between the
client component and the wind farm server is done using HTTP, which is strictly
request-response based. This request-response requirement makes it impossible
to implement the notifications from wind farm server to clients using the natural
callback based protocol shown in figure 6.

:Client
:Wind Farm 

Server
:Turbine Node

notify(sensor1 = 3.1415)
notify(sensor1 = 3.1415)

notify(sensor1 = 2.7182)
notify(sensor1 = 2.7182)

Figure 6: Natural implementation of event callback.
Not supported when HTTP is used.

Instead a poll-based event notification mechanism must be used to imitate
the callbacks. This is implemented by letting the clients periodically poll the
wind farm server for changes to the subscribed sensors. By letting the wind farm
server only return the values for changed sensors since last poll, the data flow
of the event based callback mechanism are imitated as closely as possibly given
the underlying restraints of the request-response protocol. This mechanism is
depicted in figure 7 on the next page.
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:Client
:Wind Farm 

Server
:Turbine Node

notify(sensor1 = 3.1415)

notify(sensor1 = 2.7182)

read(token)

{ sensor1 = 3.1415 }

read(token)

{ <empty> }

read(token)

{ sensor1 = 2.7182 }

Figure 7: Actual implementation of event callbacks, using a poll-based mechanism.

2.2.2 Allocation View

The deployment diagram for the system is shown on figure 8. The components
on this diagram should be easily recognizable from the previous C & C diagram.
A few items might be worth a couple of additional words though.

:Client

:Wind Farm Server :Wind Turbine Node { OS = Windows }

:JVM

:Wind

Turbine Service
:OPC Server

COM

:JVM

:Wind

Farm Service

RMIHTTP

Turbine
RFC

Figure 8: Deployment diagram.

Operating System: The operating system of the wind turbine nodes are re-
stricted to Microsoft Windows due to the fact that the OPC DA specifi-
cation is Windows centric as it is based upon Microsoft COM. Since the
actual sensor readings are simulated inside the wind turbine service used
in this thesis this restriction is not enforced in this work.

Turbine RFC: The remote field controller (RFC) is a hardware unit that runs
a hard real-time operating system that controls the turbine. This is the
center of all access to the communication bus running in the turbine. The
communication between the RFC and the OPC-server is specific to the
vendor of the RFC.

2.2.3 Module View

Most of the static development units (Java packages and classes) in the system
are not vital to the understanding of the relevant parts of the system for this
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thesis. The only part that it is necessary to understand is the data-model for
subscriptions shown as a class diagram in figure 9. This shows the data model
used in the subscription multiplexer component.

Turbine
Sensor

1

0..*Client 

Subscription 1

0..*

Observes

Sensor Proxy
1

1..* isChanged() value()

Figure 9: Class diagram for subscriptions in the subscription multiplexer component.

Basically this shows that one turbine has several sensors, and that one sensor
can be observed by many client subscriptions. The only non-obvious class is
the sensor proxy class, that has a “changed” state for a sensor. Each client
subscription has its own copies of proxy classes for each observed sensor. This
is necessary because of the “polled-based HTTP notifications” that takes place
between the clients and the wind farm service, as this has the effect that a client
subscription has its own independent view of whether a sensor has changed since
its last reading.

This is necessary since the protocol between clients and the wind farm service
are optimized to minimize the message payload size, such that each client poll
for changed values only returns the actual changed values since last call. This
could of course be criticised as an optimization that introduces additional client
session state on the farm servers. But it is an optimization that is necessary due
to the fact that some clients will connect over relatively slow telephone lines in
form of single-channel ISDN lines, and will subscribe to sensor values for more
than 100 sensors at the same time.

:Client 

Subscription

{C1}

:Sensor

{S1}

:Sensor

Reader

read(token)

{ S1 = 3.1415 }

value = 3.1415

value = 2.7182Failure – this return 

message should have been 

empty as the value for S1 

has not changed since last 

read from client C1.

read(token)

{ S1 = 3.1415 }

Figure 10: Sensor subscriptions - showing why the sensor proxy is necessary. Note that
the “sensor” object is not the physical sensor, but the OO in-memory representation
of the sensor. That is why the sensor reader updates this object with the values it has

read from the physical sensor.

The sequence diagrams on figure 10 and figure 11 on the next page shows this
mechanism. First in figure 10 it is depicted why this per client state requires that
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:Client 

Subscription

{C1}

:Sensor Proxy

{S1 for C1}

:Sensor

{S1}

:Sensor

Reader

read(token)

{ S1 = 3.1415 }

value = 3.1415

read(token)

{ S1 = 3.1415 }

isChanged() = true

read(token)

{ <empty> }

read(token)

{ S1 = 3.1415 }

isChanged() = false value = 2.7182

Figure 11: Sensor subscriptions with the sensor proxy. It is worth noting that the
communication between the client and the sensor proxy is remote communication over
HTTP, whereas the communication between the sensor proxy and the sensor is a

standard local in-process method call.

the sensor proxies are present as the described use case is simply not supported
without. Thereafter figure 11 shows the actual implementation with the sensor
proxy objects.

2.3 The System Components in Client-Server Terms

To give the reader further understanding of the roles of the three distributed
components, the farm server, the turbine nodes and the clients, it is preferable
to think of each of these as participants in the traditional client-server relation.
Furthermore this characterisation will help in fitting them into the relevant
replication roles, which is the subject of chapter 3.5.

The focus in the description of the roles, is on the components relation to
the state in the farm server, as this state is subject to later replication across a
number of farm servers.

Farm server: The farm server acts as a server , both in the relation to the
turbine nodes and in the relation to the clients. The reader might object
towards the role as a server in the relation to the turbine nodes, since it is
the turbine subscription service on the farm server that actively calls the
subscription service on the turbine node. To this it should be replied that
the main stream of traffic in the relation, the delivery of sensor readings,
goes from the turbine node towards the farm server. So the only reason
that there are some traffic going in the other direction, is because the farm
server and turbine nodes enters a long running relation when the turbine
node registers itself at the farm server on startup. The roles of the farm
server are, as briefly mentioned in the overview of the system in chapter
1.1, primarily to act as a middleman in the observer-pattern, where it
takes the following roles:
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� Forwarding observer: Conceptually it forwards the notifications
of sensor changes from the turbine nodes to the clients.

� Notification mailbox: But implementation wise the forwarding is
implemented in form of acting as a notification mailbox in the ob-
server pattern until clients are ready to fetch the actual notifications.

� Multiplexer/broadcaster: It multiplexes several subscriptions for
one particular sensor at one turbine node into only one actual sub-
scription on each turbine node. So when a notification comes back
from a turbine node, it broadcasts it to all the registered subscribers
(i.e. clients). This mechanism isolates the load of the internal network
from the number of end-user clients. I.e. the network notification traf-
fic will not increase between the farm server and the turbine nodes,
no matter how many clients subscribes to a given value. Figure 12
shows this multiplexing.

{subscr = 

(node1, 

sensor = (A,B))}

:Client 1

:Wind Farm 

Server

:Turbine Node 1

:Client 2

:Client 3

{subscr = (node1, sensor = (A,B))}

{subscr = (node1, sensor = (A,B))}

{subscr = (A,B)}

:Turbine Node 2

Figure 12: Multiplexing 3 client subscriptions for the same data into 1 subscription on
the turbine node.

Turbine node: With respect to the state that should be replicated across farm
servers, that is the sensor readings, the turbine nodes acts as write-only
clients in the relation towards the farm server. In this it should be noted
that as long as the communication channel from the turbine node to the
farm server guarantees correct delivery order of the sensor reading mes-
sages sent from the turbine nodes, there are no synchronization problems,
as the data delivered by one turbine node does not interfere with the data
delivered by other turbine nodes (since they read different physical sen-
sors). So with respect to the newest value for a sensor stored at the farm
server each turbine node act as a single-writer.

Clients: The name of the client component gives a good hint as to its role,
as it takes the role of a read-write client . With respect to the ongoing
modification of what sensors it subscribes to, it acts as a writer, and with
respect to the polling for new sensor readings (i.e. notifications) from the
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farm server it acts as a reader. For the clients it should be clear that
there will be potential synchronization problems as the clients subscrip-
tions spans over the same sensors, so the update of the data structures
on the farm server that holds information about what clients are inter-
ested in events from a specific sensor, must be correctly synchronized. So
the clients acts as multiple readers for the sensor readings, and multiple
writers for the subscription data structures.

2.4 Distributed Data Structures

To further analyse and understand the problems with introducing redundancy
in the existing system, it is important to understand what and how data struc-
tures are spread across several nodes in the system. These data structures are
described in this section, and although this is an unusual architectural view, a
view-based architectural description is more focused on making a clear and full
description of a system, than following a strict dogmatic set of fixed views.

On the conceptual level, without going into the actual implementation of
the data structure in Java, the data structures that spans over several nodes are
basically only the data shown in figure 9 on page 18. I.e. the information on:

Relations: Representing what clients subscribes to what sensor readings. These
will only change when client modifies their current subscription.

Sensor values: Current values for all currently observed sensors. These will
change every time a turbine node delivers changed sensor readings.

Per subscription sensor values: The values per client subscription about
whether a given sensor has changed since the last client polling for changed
values, i.e. the information represented in the sensor proxy object in the
figure. If this information is represented as a simple boolean flag, it will be
raised every time the relevant sensor value changes, and it will be cleared
every time the client polls for changed values.

A visual representation of these data structures across the components are de-
picted on figure 13 on the following page.

With respect to the relations and the current observed sensor values it
should be clear that to reach a fully redundant solution this information must
somehow be available on all copies of a running farm server.

With respect to the per subscription information represented in the sensor
proxies, these are actually only relevant on a given farm server if the relevant
client actually uses that particular farm server for polling for sensor values. And
since this information is the most volatile in the system, it would be preferable
if this information does not have to be replicated. This issue will be returned
to in chapter 4.2 after the theory on replication has been described.

2.5 Architectural System Quality Attributes

Focusing specifically on evolving the existing wind farm SCADA system into a
highly available system, the architectural drivers and system quality attribute
scenarios that drives the refactoring are described in the two subsections below.
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Data Structures on Turbine Node

Data Structures on Farm Server

Turbine
1

0..*Client 

Subscription 1

0..*

Observes

1

1..*

1..*

1..*
Sensor

Sensor
Sensor

Proxy

Farm Server

Subscription

Data Structures on Client

Turbine
1

0..*
Sensor

Client is:

write client for 

the relations

read client for 

sensor readings

Turbine node is 

write client for the 

sensor readings

Subscription 

relations is 

maintained by the 

farm server

Figure 13: Distribution of shared data structures with comments on which component
acts as reader or writer of the data.

2.5.1 Architectural Drivers

Availability: This is of course the main architectural driver, i.e. to change the
architecture of the system to have a higher availability, where the system
will continue to work even in the case of a hardware failure of the central
wind farm server node.

Performance: Performance is not an explicit goal for the architectural changes,
as the system as it is today has adequate performance. Nevertheless it is
important not to lose focus on performance entirely, as quite a few avail-
ability solutions has an adverse effect on performance as additional over-
head is introduced by these. In all fairness it should be said that in certain
scenarios some availability tactics actually has a positive influence on per-
formance when systems are running in normal operation. An example of
this is replication of strictly immutable data.

2.5.2 Quality Attribute Scenarios (QAS)

The QAS’s for these architectural drivers are described in the [Barbacci et al., 2003]
format in the tables below.
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Scenario Refinement for QAS1
Scenario(s): An instance of the wind farm server crashes, this

is detected by all clients using the server, and
the clients automatically, without user intervention,
switches to using another wind farm server. The pe-
riod where no new data arrives at the client is at
most 5 seconds.

Relevant Quality
Attributes:

Availability

S
c
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s

Source: Internally.
Stimulus: A crash.
Artifact: A wind farm server node.
Environment: Normal operation.
Response: The clients and turbine nodes detects that a wind

farm server instance is crashed, and switches to use
another wind farm server instance for communica-
tion.

Response
Measure:

The flow of sensor readings should continue without
stop, with a single delay at failover time that is at
most 5 seconds long.

Questions: N/A.
Issues: For hanging servers (i.e. ”non-halt” crashes) the 5

seconds deadline will not be reachable as the typical
TCP/IP timeouts will be longer than this, making it
impossible to detect the crash within the 5 seconds
window.

The failover is a protocol option to the client
nodes. For some existing types of clients the cost of
adding automatic failover is not economically fea-
sible. These clients should continue to work as today.

The 5 second deadline can of course only be guar-
anteed for the clients where the connection between
client and farm server is of a quality where the nor-
mal operation 1 second soft deadline for sensor read-
ings applies.

Table 1: Quality attribute scenario 1.
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Scenario Refinement for QAS2
Scenario(s): Several instances of the wind farm server are unavail-

able. The scenario described in QAS1 must hold for
the case where 2 wind farm servers are down at the
same time.

Relevant Quality
Attributes:

Availability

S
c
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a
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o
P

a
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s

Source: Internally.
Stimulus: Two crashes.
Artifact: Two wind farm servers crashes (i.e. are down at the

same point in time).
Environment: Normal operation.
Response: As QAS1
Response
Measure:

As QAS1

Questions: N/A
Issues: It is implicitly given by this QAS that the system

will not be able to operate in normal mode if more
than 2 wind farm servers are unavailable at the same
point in time.

Table 2: Quality attribute scenario 2.

Scenario Refinement for QAS3
Scenario(s): The system should be be able to deliver sensor read-

ings every second for 500 sensors distributed over 10
turbines to 5 concurrent clients, where each client
subscribes to values from 100 of these sensors.

Relevant Quality
Attributes:

Performance

S
c
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ri

o
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rt

s

Source: 5 concurrent clients.
Stimulus: Each client subscribes to 100 sensors distributed over

10 different turbine nodes.
Artifact: System.
Environment: Normal operation.
Response: Clients receives sensor readings as they change.
Response
Measure:

The sensor readings arrives with 1 second intervals.

Questions: N/A
Issues: The 1 second deadline for sensor readings is a soft

deadline, meaning that it may occasionally be missed
or be delayed. Furthermore it only applies for clients
where the connection between client and farm server
is of a sufficient quality.

Table 3: Quality attribute scenario 3.
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A few comments on some of these QASes seems appropriate. First and
foremost the reader will probably have noticed that quite a few sentences have
been used to describe in very vague terms that there are some requirements for
the communication line between the clients and the wind farm server, and that
this must be of “.. sufficient quality”. This vague term is of course not satisfying
for a QAS that should in its nature be as clear and unambiguous as possible.
Unfortunately it is the case for the wind farm SCADA system that the network
connectivity from clients varies over a broad range, spanning from single line
ISDN connections of low quality at the low end of the spectrum to high-quality
fixed connections at the high end. Therefore this loophole exist to be able to
not promise performance that will never fly for the low end of the spectrum.

Of course the vague terms should in the perfect world be exchanged with
more precise wordings describing the minimum requirements to the commu-
nication lines where these QASes will apply. Words that should describe the
requirements with respect to bandwidth and latency. But although it should be
possible to find these requirements through tests and measurements at various
line types this is work for another time. For the prototypes created as part of
this thesis it suffices to say that these will work with communication lines of “..
sufficient quality” to fulfill the performance QASes.

2.6 Source Code for the System

At the offset of the thesis work, it was the intention to build the prototypes
directly upon the existing system and measure directly on these with respect to
fulfillment of the QASes. Unfortunately the existing system contains a lot more
functionality, complexity and network traffic that are more business related and
are not really related to the availability of the system, and are therefore outside
of the focus of this thesis.

Therefore it was clear that to get a manageable and clean baseline system to
build upon, it would be necessary to extract the relevant components from the
existing system. Unfortunately the components in this system has undergone
several revisions and do no longer exhibit a particular low coupling between
components4. So after having battled with this, it was deemed easier to make a
complete re-implementation of the relevant parts for the model together with a
simple mock implementation of the sensors, making it possible to run the tests
and scale the test system without having to be limited by actual hardware RFC
resources. Furthermore this makes it possible to loosen the operating system
restriction for the wind turbine nodes, since the OPC-server requiring Windows
is not necessary on the test systems when no real RFC communication takes
place.

The model system of course fulfills the performance QAS 3, but does not
fulfill the availability QASes 1 and 2.

Appendix C gives an overview of how the architectural description in the
previous chapters maps to the source code in the model system.

4This seems to be a failure to fulfill standard good practices with respect to architectural
modifiability quality attributes. This might be the case, but in hindsight without further
information, it is hard to make that conclusion, as modifiability might never have been a
prioritized architectural quality attribute.
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3 Availability Theory

To change the existing system to fulfill the new availability QASes it is necessary
to be familiar with the computer science theory on the end-to-end principle, fail-
ure semantics, replication and architectural tactics for introducing availability
properties into a system. This chapter gives an introduction to these areas for
the reader for whom these theories are somewhat unfamiliar. For other readers
this chapter will contain well-known material and can probably be read fast by
skimming.

3.1 Availability - The Uptime Percentage

The standard way to look upon availability of a system, is to use the uptime
percentage as goal. Like for instance the famous 5-nines goal 99,999%. In the
context of the wind farm SCADA system, it should in theory be possible to
calculate such an availability percentage for the wind farm servers following the
traditional formula:

1− pn

Where p is the probability of one wind farm server being unavailable, and n
is the number of wind farm servers. I.e. this expression calculates the probability
of at least one of the central servers being available.

This means that for a system where p = 5% the overall availability will be
increased from 95% to 99.75% just by introducing one independent replicate of
the central wind farm server.

The observant reader will of course have noticed that this probability is only
the probability of one of the wind farm servers being available, which only serves
as one factor in calculating the overall system uptime.

So measuring uptime percentages is all well and good, but nevertheless it
should be noted that none of the previous availability QASes uses an uptime
percentage as success criteria. This is by intention as it seen from a technical
point of view is simple impossible to prove upfront that a complex system with
a multitude of different cooperating hardware and software components like the
wind farm SCADA system has an availability of X percentage.

So for the SCADA system it is much more measurable to specify the avail-
ability goal as “can or can we not survive two concurrently down farm server
nodes”, as QAS1 and QAS2 describes. The uptime percentage is then better
left for the system level agreements (SLA) and the political and non-technical
battles related to that.

3.2 The End-to-End Principle

If a system is build using stateless network nodes and fulfills the so called
end-to-end principle as described in [Saltzer et al., 1984] and elaborated on in
[RFC 3724], it will greatly simplify the task of adding redundancy to a sys-
tem, as it can mainly be done by adding additional redundant stateless network
nodes. It should therefore be considered whether a distributed system where
high availability is required fulfills this principle.

In brief the end-to-end principle when applied to network nodes states that:
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The network itself should not contain any state, leading to the fate of
a conversation to only depend upon the endpoints. And in the case
where state is maintained in network hops along the route between
the endpoints, this state should be minimized and self-healing, so
that the conversational state can be reconstructed in case a network
node crashes.

In the lingo used in [RFC 3724] the reconstructable state is labelled “soft state”,
whereas the critical conversational state that should only be maintained in the
endpoints is labelled “hard state”. In the wind farm SCADA system the central
farm server should be seen as a network hop between the endpoints nodes, the
clients and wind turbine nodes.

3.3 Failure Semantics Theory

To be able to choose the architectural tactics for solving the availability problems
in the wind farm system, it is necessary to delve into the theory on what kind of
faults can arise in the system. A very thorough analysis of this area of so called
failure semantics in context of distributed systems is found in [Cristian, 1993].
Although the paper is a little dated, and a lot of the examples in the paper uses
hardware of a foregone era5 as case-studies, the analysis of the different fault
types and architectural remedies for handling them is still relevant.

The reader should pay attention to the fact that Cristian and his contempo-
raries like [McAllister & Vouk, 1996] does not have a clear distinction between
faults and failures. In this thesis these terms will be used like in the later works
of [Burns & Wellings, 2001] and [Bass et al., 2003], where failure refers to ex-
ternally observable system failures triggered by component faults that have not
been masked or corrected inside some system component. In a system with inter-
acting components it should be clear though that the failures of one component,
is actually faults when seen from a dependent component, so the separation into
these two terms can quickly become a battle of words.

Cristian classifies component failures into three main groups:

Value failure: That an output value of a component is wrong6.

Time failure: That the timing of a response is incorrect.

Arbitrary failure: A combination of a value and a time failure, e.g. an incor-
rect response delivered to late.

Cristian describes several subclasses of these main groups:

� Crash Failures: The situation where a component completely stops han-
dling requests.

� Omission Failures: The situation where a component does not respond
to one or more requests, but the component has not crashed, and will
continue to answer other or later requests.

5It is probably not many persons under the age of 35 that has even heard of the DEC VAX
or the Tandem systems that are described in the paper.

6Note Cristian labels this group response failures.
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� Corruption Failures: Where a response of a component is incorrect. This
incorrect response can both be incorrect with respect to a returned value
or with respect to an incorrect internal state transition.

� Timing Failures: Can be split into both to late or to early responses.

3.3.1 Choosing the Relevant Faults

The challenge for an architect is then two fold; first to find out exactly what
kind of faults can take place in the system, and how they should be handled.
The QASes in chapter 2.5.2 should act as the guideline for this, as these should
highlight the availability scenarios the different system stakeholders find of most
importance.

A different school of thought, which probably originates from the physical
hardware engineers, is presented by trying to measure actual reliability metrics.
[Sommerville, 2007, ch.9.4] describes a list of these with the well known mean-
time-to-failure (MTTF) as one.

Along these lines Cristian points out that the correct way to characterise a
specific fault as negligible is to base this judgment on hard measurements and
a stochastic probability distribution for the fault.

Although these recommendations seen from a theoretical point of view are
correct, it should be noted that these hard low-level measurable metrics are not
that relevant in a large distributed system like the wind farm SCADA system,
where standard commodity hardware is used in setups that are individual tai-
lored to each wind farm. An example of this is the simple fact that the physical
layout of two wind farms are not identical as this depends on the topography of
each site. This of course leads to variations in things like cable lengths, leading
to different latency characteristics for each wind farm. Given complexities like
this and the low volume of installations, it is simply not economically feasible to
strive for calculating a theoretically perfect probability distribution when solv-
ing availability problems for systems like the wind farm system. This follows of
course along the lines of the previous discussion of dismissing the SLA uptime
percentage as more of a political than a technical measure when talking about
complex distributed systems like the wind farm system.

3.3.2 Handling Faults - Mask, Propagate or Correct

Based on the decision of what faults the architecture should be robust with
respect to, the second challenge for the architect is then to find architectural
solutions that will either mask or correct the faults as they arise. The actual
solutions, in form of architectural tactics are described in chapter 3.4, whereas
the current chapter describes the different approaches of handling faults from a
higher perspective.

Seen from the individual system component where a fault is triggered, there
are three ways to deal with it:

Masked: The component can mask the fault so the users of the component will
never observe an external component failure, even though the component
or part of it is still in an erroneous or degraded mode.
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Corrected/recovered: The fault can be fully corrected, i.e. full recovery of
the fault will take place in the component itself. The corrected fault will
of course not be observable from the outside.

Propagated: The component can “give up” and propagate the fault, whereby
it will turn into an external observable component failure.

It should of course be mentioned that the propagated solution does not actually
handle the fault. But as a system typically consists of many components and
layers of components, this will not necessarily lead to an overall external system
failure, as the individual component failure can be dealt with in a combined
effort between several components, or it can be handled at a higher level. These
two solutions are labelled by Cristian as group masking and hierarchical masking.

3.3.3 Cooperative Masking: Hierarchical

Hierarchical masking is what takes place when a higher level component handles
the failure in some way. One typical hierarchical solution is to replay the failing
request towards the failing component (in a typical database bound system,
an example of this could be by re-issuing a transaction that has been aborted
by the database manager). Solutions for hierarchical masking therefore often
takes the form of exception handling code in the components calling the failing
component.

It should be obvious that making strong fault resistant components at a low
level will of course make it easier to implement the higher level components,
as they do not have to deal with as many fault scenarios. But as high fault
resistance at a low level does not come without a cost, the pros and cons of this
must be balanced pragmatically as described in the classical article by Saltzer
et al. on the end-to-end principle ([Saltzer et al., 1984]).

So as it is often the case in engineering disciplines there are no one-solution-
fits-all - as an example of this one can consider the transport layer in the IP-
stack, where both TCP with all its reliability guarantees is available, as well
as UDP which gives no delivery or ordering guarantees. In some scenarios
it is a better overall solution to choose the much cheaper UDP (cheaper in
cost of messages and overhead) for communication, even though it may require
additional error handling in a higher level component.

3.3.4 Cooperative Masking: Group

The other type of cooperative masking is called group masking where a number
of components form a group, hiding failures in any individual group member
from outside users by the group management mechanisms. In a pure group
masking solution the users of the group does not see the individual members,
as these are abstracted away by the group management mechanism. What the
client sees is just the output of the entire group, which is of course a function
of the outputs of the individual group members.

Figure 14 on the next page shows the typical way to hide the individual
group members from the clients using the group, using a so called group front
end (FE) component. The reader should not necessarily focus on where the FE
is placed on the figure, but more focus on the mechanism. In some solutions
the FEs are in themselves nodes in a distributed systems, and in other solutions
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Figure 14: The role of the front end (FE) components in group masking.

the FEs are actually libraries linked into the client, whereby they are actually
running in the client process space.

Exactly how the group output function is designed also differs from solution
to solution. The design should take into account that the failure semantics of
the entire group depends both on the individual member nodes failure semantics
as well as the failure semantics of the communication mechanisms between the
nodes. If both of these exhibit strong guarantees with respect to the failure
semantics, e.g. by guaranteeing that there will be no corruption faults neither
from the components, nor from the message transport on “the wire” between
components, the group output function can simply be: “Use the first response
that is received from any group member”. If on the other hand either the nodes
or the communication mechanism can not give this kind of guarantee, the group
function instead has to be designed to use voting, in which case replies from a
majority of the nodes must be awaited before the group function can reply.

The final large question for group masking is what group size should be
used. Again this depends on what failure semantics can be guaranteed in the
group. Furthermore it of course depends on what kind of tolerance must be
achieved. For this Cristian uses the term K-fault tolerance, where K is the
maximum number of failing nodes the group should be able to handle7. In the
most general case where a group has to deal with arbitrary or corruption failures
the group size has to be 3K + 1 as proved in the [Lamport et al., 1982] classical
article on the Byzantine Generals Problem. If the group instead should only
handle crash and omission failures a group size of K + 1 should be sufficient.
But generally it can be said that a large number of group members leads to a
high K, but with the cost of higher communication overhead. The exact opposite
properties are of course experienced for groups with a small number of members.

As a closing comment on the failure semantics, it should once more be
stressed that since we are discussing distributed systems, the most important
fact to remember, is that for both hierarchical and group masking solutions the
actual observed failure semantic of a lower level component is a function of both
the failure semantic of the actual component and the failure semantic of the
communication layer used for communication with the component.

7K = 1 is of course a so called single fault tolerant group.
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3.4 Tactics for Increasing Availability

After having described the theory on failure semantics and the abstract theo-
retical ways of handling faults in a system, it is time for turning towards the
actual architectural tactics for increasing availability.

A list of the overall types of architectural tactics for this is described in
[Bass et al., 2003, ch.5.2]. In the following paragraphs each of the four tactics
are shortly presented, before the suitability of each individual tactic, if applied
to the wind farm SCADA system, is later analysed in chapter 4.2 on page 42.

3.4.1 Voting

The voting tactic is a rather expensive tactic, that is really only suitable in
systems where corruption faults must be handled. Faults that can either stem
from defective components and/or from transmission failures.

With respect to corruption faults introduced by the transmission mecha-
nisms, these are relatively easy to abstract away on the higher levels by using
some kind of CRC-codes at the lower levels combined with appropriate retrans-
missions. Which is in practice what happens when a reliable transmission pro-
tocol like TCP is used.

With respect to corruption faults introduced by errors in either hardware
or software, along the component path all the way from the sensor readings to
the client, these are a lot harder to handle at lower levels. So in this case the
decision for ignoring these kind of errors, is instead based on pure “economic”
considerations. I.e. the voting tactics for handling this, no matter whether a
parallel group masking solution in form of so called N-version programming, or
a sequential hierarchical masking solution in form of recovery blocks, are simply
to expensive to implement.

For completeness it should be mentioned that a hierarchical solution with
recovery blocks can not detect and handle all kinds of corruption faults as well as
a group solution with N-version programming can. In a recovery block solution,
faults can only be handled if it is possible to detect that a corruption fault has
happened in a given block. So for certain systems only a N-version solution
will make sense. For the interested reader [Burns & Wellings, 2001, ch.5.4-5.5]
contains in depth coverage of these two kinds of voting tactics, and also gives a
thorough listing of mechanisms for actually detecting some kind of corruption
faults in a recovery block solution.

Burns & Wellings furthermore describes the two above tactics as respectively
static redundancy and dynamic redundancy :

Static redundancy: In a static redundancy solution all the components are
used on each request. I.e. statically no matter whether faults occur. N-
version programming is god example of this.

Dynamic redundancy: Opposite to the static redundancy, solutions with dy-
namic redundancy has the properties that the components are used dy-
namically only when actually required as faults occur. Recovery block
programming fails into this group.
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3.4.2 Spare

This is the solution where a cold spare machine is kept available for booting
when required for replacing the central node. This is actually the state in the
wind farm solution as it is today, which is deemed insufficient to fulfill the QASes
of the wind farm SCADA system.

Following the introduction of the spare into the system, all the client sub-
scriptions have to be set up again by each client.

3.4.3 Active Redundancy

Active redundancy as described by [Bass et al., 2003] is another type of static
redundancy. It is defined as a system where the client sends the same request
to all the redundant components in parallel, and they all process the request
and replies. What distinguishes this from the voting tactic is that the client
just uses the first response it receives and throws away all later responses to the
same request.

This tactic as well as the N-version voting tactic should be easily recognisable
as two different implementations of the so called group output function described
on a higher theoretical level in chapter 3.3.2.

As a benefit of active redundancy, it is implicitly given that it might have a
positive performance effect due to the implicit architectural tactic of “maintain-
ing multiple copies of either data or computations”. Unfortunately this must be
weighted against the possible adverse performance effect due to the complexity
and increased number of messages involved in keeping the multiple redundant
components in synchronization.

3.4.4 Passive Redundancy

Passive redundancy is of the dynamic redundancy type, where the client only
communicates with the primary component, falling back to one or more standby
components as necessary if the primary fails. At takeover time the passive
component must then be synchronized with the latest persisted state of the
primary component, before being brought into service.

This type of redundancy opens up for a traditional computer science tradeoff,
where it is possible to adjust how much the standby components are allowed
to be “lagged”, thereby trading lower messaging overhead at normal operation
with a longer take over period as more state has to be synchronized.

The pros and cons for respectively active and passive redundancy are sum-
marised in table 4 on the next page.

Whether an active or a passive redundancy solutions is used, the main ques-
tion is, exactly what mechanisms are to be used for replicating the states between
the redundant components. This will be the subject of the following chapter on
replication theory.

3.5 Replication Theory and Tradeoffs

When surveying the theoretical landscape on replication it is important to keep
in mind that the goal of introducing redundancy in a system is typically either
to accomplish high availability of a system, to introduce fault tolerance in a
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Pros Cons

Active
Redundancy

Fast responses, even in the
face of a failing component.

All nodes are equal, so no
election algorithm required.

Large overhead in ex-
changed network messages,
as all components must be
kept in “clock-step” syn-
chronization at all times.

Potential complex messag-
ing protocols required to
guarantee the global state
synchronization.

Passive
Redundancy

Smaller overhead in number
of exchanged messages.

Simpler message protocols
as some state lag is allowed
in certain time frames.

Response time will be
slower when a failover
between the primary and a
standby component takes
place.

Requires a failure detection
mechanism and an election
algorithm for selecting the
primary node.

Table 4: Pros and cons for active and passive redundancy.

system or to increase performance of a system. In general these three goals
have slightly different properties with respect to the data consistency:

High availability: In redundant systems designed with this as the main goal,
data might be out-of-date, i.e. lagged to a certain degree. The most im-
portant property is that data is always available.

Fault tolerant: In redundant systems designed with this as the main goal, the
most important property is that data must always be correct.

Performance: In some systems data is replicated with the focus of increased
overall system performance. This can both be in form of caching of the
same data in the different layers in the system, or in form of introducing
multiple copies of a node with the same data with the main goal of in-
creasing performance, e.g. in form of geographical separation of the nodes,
so the node used is always geographically close to the using systems. A
good example of a geographically distributed system designed with perfor-
mance as the goal, is the Akamai world wide network of servers for serving
web-content.

It is important to keep these different types of goals in mind when analysing the
replication theory as they have different impact on what replication properties
are required and which one are optional. Note thought that these goals are not
necessarily orthogonal. In some type of systems several of them are required. For
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instance in the wind farm SCADA system, where some replication has already
been introduced, in terms of caching sensor readings from the turbine nodes
on the farm server, partly because of performance. It is a little ironical that
this exact replication of data between farm server and turbine nodes partly
to increase performance, is exactly what makes it harder for us to introduce
replication of data across redundant farm servers.

As a quick side note, it might be necessary to address the fact that some
readers will at first look have a strong natural resistance against the view that a
high available system with inconsistent data is of any value at all. A resistance
that can be phrased into a slogan like:

“If a system can not deliver correct data, it doesn’t matter how fast
it performs”

On the surface this expression seems like a natural statement that holds in all
cases. But as soon as one delves below the surface, it is clear that there are lots
of systems where the “correctness of data” can be bent slightly and still comply
to the business requirements of the system. A fact that is especially valid if the
benefit of doing so, is a large performance increase.

It is of course important to state that when discussing systems allowing
inconsistent data, we are talking about setting boundaries on the sort of incon-
sistency that are allowed. So it is not a about allowing all inconsistencies but
only the bounded range of inconsistencies that makes sense in the given system.

3.5.1 Types of Replication Messages

When considering how data should be replicated between redundant nodes, it is
important to be aware that depending on what type of replication messages are
used, the requirements on the failure semantics offered by the communication
layer, differs significantly.

It is therefore important to distinguish between the two following types of
replication messages:

State: Replication systems sending only full states (i.e. data) in the commu-
nication, does not require a reliable communication layer. If a message is
lost, it can just be resend, and receiving the same message twice is not a
problem as the messages are omnipotent.

Operations on state: Whereas systems sending only operations on the data,
requires a reliable communication layer. This is necessary since for the
below equation to hold all operations must reach their destination once
and exactly once:

current state = initial state + all operations

Coulouris et al. points out that the model with operations on state is equivalent
to the typical message types used in client-server systems, where the servers
owns the data8 and offers methods for modifying them ([Coulouris et al., 2005,
p.750]).

8The data can manifest itself in many ways, for example in terms of state, objects (en-
capsulating state) or resources (e.g. as controlling specific hardware, such as a printer or a
disk-system).
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3.5.2 Group Communication - Multicast Messages

When state or operations on state must be replicated on a group of nodes some
kind of group communication is of course necessary. But when a message in a
distributed system should be delivered to several nodes the communication is no
longer as “simple” as when using normal one-to-one communication. The four
main questions in group communication are:

Group membership: This question goes on what nodes in a system are actu-
ally part of the group at a specific time, i.e. to what nodes the messages
should be delivered. The theory on this area is highly simplified if so called
static groups are used, i.e. groups where members does not dynamically
enters and leaves the group. In a static group all the members are there
from the beginning and until the end, where the only option is that a
member may crash and stop sending and receiving messages. The reader
interested in dynamic groups with so called group views should consult
the overview of the theory on this in for example [Coulouris et al., 2005,
ch.15.2] or [Birman, 2005, ch.15].

Multicast reliability: The standard delivery guarantees that is given in one-
to-one communication when using a protocol like TCP, is a lot harder
to achieve when multicasts are used. So to be able to guarantee that
if one member gets a message, all other members gets the same message,
relatively complex protocols must be used. [Coulouris et al., 2005, ch.12.4]
gives an overview of the theory on this area.

Message ordering: Even if reliable multicast is implemented, there is still
no guarantees as to the order of the messages on the individual member
nodes. Messages sent from different members can be seen in entirely arbi-
trary order at the other group members. Some ordering guarantees can be
given by applying yet another protocol on top of the protocol used for re-
liable multicast. A protocol that typically guarantees one of the following
message orderings9:

� Total: Defined as: If a correct process delivers message m before it
delivers m’, then any other correct process that delivers m’ will deliver
m before m’.

� FIFO: Defined as: If a correct process issues multicast(m) and then
multicast(m’), then every correct process that delivers m’ will deliver
m before m’.

� Causal: Defined as: If multicast(m) � multicast(m’), where � is
the happened-before relation induced only by messages sent between
the members of the group, then any correct process that delivers m’
will deliver m before m’.

These definitions might sound very much like alike, but as usual the devil
is in the detail of the exact phrasing. Overall it can be said that the total
ordering, is the only one of the three that gives a global ordering (i.e. the
same message order on all members). Opposed to this the FIFO ordering
only describes the ordering of messages sent by one process. And finally

9Definitions taken from [Coulouris et al., 2005, ch.12.4.3]
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the causal ordering builds upon the classical [Lamport, 1978] happened-
before relation for ordering some but not all events in a distributed system.
For a global ordering with the best event ordering that can be achieved
in a distributed system, the total and causal ordering can be combined.
Finally it should be noted that any multicast protocol that fulfills causal
ordering also trivial fulfills FIFO ordering.

Elections: In the passive redundancy tactic, and in some algorithms for han-
dling dynamic groups it is required that one of the members of a group
takes a special role, e.g. as a master in the group for failure detection. The
same goes for some ordering algorithms, e.g. some of the protocols used for
implementing total ordering, where a global sequencer node is required.
In any of these cases an election algorithm is also required. The inter-
ested reader is referred to other work on the specialised topic on different
election algorithms.

With reliable and ordered multicast it should be possible to build a replication
version of the wind farm SCADA system, with either active or passive redun-
dancy. But just as multicast is an abstraction build upon normal point-to-point
communication, it is also possible to build further abstractions on top of mul-
ticast and see the replicated nodes as sharing one large virtual memory area,
where a value written to a memory position by one node, will be atomically
available for reading by all the other nodes. This is one incarnation of the dis-
tributed shared memory (DSM) model, and the topic of what kind of consistency
guarantees can be given in such as system is the subject of the next chapter.

3.5.3 Memory Consistency Models

No matter whether a replicated system is build using a DSM middleware layer,
build with some other middleware layer, or build manually using either low level
point-to-point or multicast communication, the theory on memory consistency
models is important to understand, as it highlights the different possibilities
that generally exists in all types of system where

two or more processes accesses shared memory in some incarnation

This phrase is highlighted as it requires a little further explanations for one
to be able to acknowledge how many types of systems the theory of memory
consistency actually spans over:

� The term processes refers to any kind of computing processing that can
take place at separate processing units. So the memory consistency models
are relevant both in systems where the processes is running on two CPUs
in one physical machine sharing the same physical RAM over a shared
bus, as well as in systems where processes are running on two distinct
physical machines where the shared memory is only virtual in terms of a
DSM layer10.

� The price of implementing strict memory consistency is of course higher
and more complex in a distributed system, than in a system where all

10As a note it can be mentioned that even virtual machines, like the JVM requires and has
well defined memory consistency models.
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the processing takes place in the same physical machine. But the theories
applies nevertheless to all systems whether they are in either end of the
spectrum, or somewhere in between like for instance NUMA11 systems.

In systems with shared memory the problem is that whenever a process reads a
given memory location, there are actually very few guarantees that can be given
to what value it will see. So although the layman will say that this is simple,
it must be the last value written by any process, it is unfortunately not that
simple as shown on figure 15 where the notation used is:

� W v
l a write of the value v to location l.

� Rv
l a read of the location l returning the value v.

P1

P2

Wx
0

Wx
1

Rx
1

Rx
0

t

Figure 15: Memory consistency example with two processes P1 and P2 reading and
writing to the same shared location x.

Although from the layman perspective the situation on the figure is clearly
wrong, that the read performed by process P2 of the x-location will return a
value, 0, long ago over written with a 1 by process P1, and even worse, a read
that takes place after the read in process P1 has returned the “correct” value 1.
A situation like this is unfortunately very well possible to see in a system, due to
a lot of factors. In a distributed system, this can for example be due to latency,
i.e. meaning that the effect of W 1

x has not yet reached the cached location where
P2 is reading from. In a single machine system, this can for instance be due to
temporary CPU register caching or CPU level 1 or 2 caching of the location x
in either process P1 or P2.

So the goal of defining an appropriate memory consistency model is
to make it possible for the layers build upon the given system to be
able to get guarantees about exactly how memory reads and writes
will behave with respect to ordering of values read and written by the
other processes in the system.

The memory consistency model can in other words be seen as a sort of guaran-
teed failure semantics for the memory in a system. And as previously described
a strong failure semantics at a lower level makes it easier to build the higher
layers, but typically at increased costs at the lower levels. This is also exactly
the case with respect to the memory model, where a strict consistency model
will make it easier to build compilers and programs on the system, but have
as a cost that all memory reads and writes are more expensive than in a more
weak consistency model.

Furthermore it should be noted that the theory on memory consistency mod-
els is also used in relation to the computer science synchronization theory, where

11Non uniform memory access (NUMA) describes a conceptual type of system where there
are different access times for different parts of the memory.
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synchronization is both about atomicity of a sequence of operations in terms of
ensuring mutual exclusion to so called critical sections, as well as condition
synchronization or memory visibility between processes and threads.

[Mosberger, 1993] does a good job on describing the different theories that
has been put forth on memory consistency models with different guarantees. A
short distillation of the most relevant theories is described below in decreasing
strictness. For each of these Mosberger includes examples of legal execution his-
tories similar to the one in figure 15. The reader for whom memory consistency
is a new concept, is encouraged to study these as they give a good understand-
ing of the subtle differences between what the different models guarantee. The
examples could of course have been included in this thesis, but since the Mos-
berger paper is so clear, the inclusion of the examples here would only have been
a shallow copy of a clearly written paper.

Atomic consistency/linearizability: This is the most strict consistency model,
where all reads and writes are serialized according to the fictional “real
time”, as if the entire system was one processing unit. For anything
but actual single processor systems, this consistency model is usually to
strict and expensive, but it typically acts as the baseline against which
the weaker consistency models are compared.

Sequential consistency: This consistency model can be seen as an implemen-
tation of the atomic consistency model with a global ordering. But instead
of the “real time” constraint, the global ordering must be consistent with
the clause “the operations of each individual processor appear in this se-
quence in the order specified by its program”.

Causal consistency: This takes the standard happened-before relation into
account. Meaning that only reads and writes that are causally related
are ordered, whereas causally unrelated events can be observed in dif-
ferent orders in the different processes. The reasons for this consistency
model should be clear to anyone familiar with the concepts described in
[Lamport, 1978].

Coherence: Where the previous consistency models all strives for some global
ordering of the read and write events, the coherence model weakens this by
only requiring sequential ordering on a per-location basis. So in a system
consistent with coherence the different processes might see the writes to
different locations in different orderings.

Pipelined RAM: This model is based upon the natural physical model that
all reads from a processor occurs as reads of the locally cached mem-
ory value12, and writes occurs by updating the locally cached value and
broadcasting the written value to all the other processors. This has as
consequence that all the write operations from a single processor is seen
in the same order on all other nodes, but the intertwining of writes from
different processors might be seen as different on different processors.

The above models are known as so called uniform consistency models. This is
opposed to so called hybrid models where the access type or context in which the

12Whether it be in form of the local physical RAM in case of a DSM system, or in form of
the level 1 or 2 cache in case of a system with shared physical RAM.
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read or write operations are performed, is taken into account. The most used
type of access to take into account in the models is some type of synchronization
context for the operation, meaning that these models are only consistent, as long
as the users respect the synchronization model. Three hybrid models described
in [Mosberger, 1993] are:

Weak consistency: The most strict of the hybrid models, where all synchro-
nization operations such as acquire(lock) and release(lock) are sequential
consistent, and all reads and writes are globally ordered according to the
fence operations that the synchronization operations actually represents.
This makes it possible to only flush writes to all the other processors when
a fence operation occur. Figure 16 gives a visual representation of the con-
cept of fence operations, also known as memory barriers. Letting the user
control when a fence operation takes place, of course puts more burden on
the users of the system, whether it be a compiler or a standard program,
as the memory accesses are only consistent when the synchronization op-
erations are performed correctly at all processors.

:Process 1 :Process 2

Wx
0

Wx
1

acquire(lockx)

release(lockx)

Fence The lockx acts as a fence / memory barrier.
Making everything before the release(lockx) on process 1
visible to everything after the acquire(lockx) on process 2

Rx
1

acquire(lockx)

release(lockx)

Figure 16: Visualization of the concept of fence operations.

Release consistency: This is a specialisation of the weak consistency model,
where the different synchronization primitives has different influences on
when written memory is flushed to the other processors.



4 APPLYING THE THEORY TO THE WIND FARM SCADA SYSTEM 40

Entry consistency: Is even weaker as instead of global fences it let the user
of the system bind individual locations to different synchronization locks.
So this can be seen as equivalent to the per-location basis uniform models.
Furthermore it lets the user define the individual accesses into exclusive
(for writes) and non-exclusive (for reads). So this model has as benefit
that a lot of concurrent access is possible, but at the expense that it has
gotten a lot more complicated to write programs on such as system.

Finally it should be noted that the consistency models only describes the in-
terleaving of individual read/write operations, meaning that to support trans-
actions further concurrency control is usually required, although of course the
weak consistency hybrid model described above has this naturally build in.

4 Applying the Theory to the Wind Farm SCADA
System

Finally, after all the theory in the previous chapter it is time to analyse how
this can actually be applied to the wind farm SCADA system. This is the focus
of this chapter. First in chapter 4.1 it is described why it is not possible to
directly apply the end-to-end principle by removing all state from the central
farm server nodes. Following this, chapter 4.2 analyses how the different avail-
ability tactics can be applied to different parts of the SCADA system. Finally
chapter 4.3 analyses how the replication theory applies to the data structures
and communication used in the system.

4.1 Applying the End-to-End Principle

The easiest solution to the availability problem is to remove all state from the
central farm server node, and thereby fulfill the end-to-end principle as described
in chapter 3.2. As previously described this will simplify the task of introducing
several redundant farm server nodes.

In the following chapters the two most obvious of these solutions for removing
network state are described together with the reasons why they are not viable
solutions. In summary they are:

End-to-End Notification: In chapter 4.1.1 the idea of having notifications
go all the way from turbine nodes to the clients without the multiplexing
state in the farm server nodes, is described.

End-to-End Polling: In chapter 4.1.2 the opposite direction is described, with
the clients doing full polls all the way through to the turbine nodes, i.e.
a situation where the farm server nodes are purely routing the network
packets.

4.1.1 End-to-End Notification

The first obvious alternative for removing state from the central farm server,
is to let all state with respect to what clients are subscribing to what sensors
be stored on the actual endpoints, i.e. the turbine nodes. In theory this should
make it possible for the turbine nodes to send the sensor value notification
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messages to the clients using any route over a multiple of central farm servers
(or directly from the turbine node to the clients without going over a farm
server). Unfortunately pushing a direct notification from the turbine node to
the client is not possible due to the strict request-response HTTP protocol used
by the clients. This direction of the HTTP message flow and the poll-based
notifications has already been described in details in chapter 2.2.1. Due to this
selection of protocol used by the clients the farm server with its HTTP server
is necessary.

Furthermore the turbine nodes should be protected from both intended
as well as unintended denial-of-service “attacks” by a larger number of clients
and/or rogue clients. This is necessary as the turbine nodes has other assign-
ments besides serving sensor values to clients. Examples of these assignments
are to periodically collect data from the rather memory limited RFCs and store
it in a local database. Also some alarm surveillance jobs are running on the
turbine nodes. And none of these assignments can be allowed to be disrupted
or delayed because of a heavy load caused by a larger number of clients. So the
multiplexing on the farm server also acts as protection of the limited computing
resources on the turbine nodes. With respect to this, it is also worth mentioning
that the turbine nodes are low end hardware when compared to the hardware
of the central farm server. There are several reasons for this hardware selection,
first cost is of course always a factor. Furthermore there is the fact that the
turbine nodes are usually placed inside the turbines, i.e. in a rather hostile envi-
ronment when compared to a normal office or data center. Finally the hardware
in the turbine nodes can not always be easily replaced or serviced, as it is often
located in rural areas. Therefore the hardware used for the turbine nodes, is,
as it is often the case for industrial hardware, selected among the time proven
older and stable hardware solutions, which has as effect that some computing
power is sacrificed for this.

4.1.2 End-to-End Polling

The first thought after the alternative in the previous chapter has been turned
down, is to reverse the picture and let the client polls go all the way through
to the involved endpoints, again removing the state from the central server.
Besides the resource problem on the turbine nodes mentioned above there are
other reasons why this is a bad idea.

First of all letting the client call block until the slowest of the involved
turbine nodes has answered is a troublesome road to take, as this will make the
client requests “break” or wait on the “weakest link in the chain”. Creating a
system with such a high coupling and dependency on a large number of nodes for
answering a trivial HTTP request does not seem architectural sound. And even
in normal operation when everything is running smoothly all client requests will
be delayed with at least 2 times the latency13 between the farm server and the
turbine nodes, as this is the fastest theoretical limit for when the turbine node
reply can come back if there are no processing time at all on the turbine node.

Furthermore if all state should be removed from the farm server, it is required
that all client requests should contain full routing information about values for
what sensors on what turbines are required. Otherwise it would not be possible

13Or more precise (4 + 2) times the latency when using RMI as described in the detailed
RMI analysis performed in appendix F.
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for the farm server to route the request to the relevant clients. This must be
compared to the situation in the existing system where the client requests for
values just consists of sending a single token as all further information is already
present at the farm server.

Finally the working threads in the application as it is today are nicely de-
coupled, separating the concerns of the applications in an attractive way. As an
example the interval with which the turbine node schedules the polling of sen-
sors on a RFC are not directly influenced by client requests for values. And the
reply speed of the central farm server for the HTTP requests are not blocking
on potentially slow RFC reads on a range of remote turbine nodes, so as it is
today the farm server can answer immediately with the data it has in its central
cache.

4.2 Analysis of Applying the Different Availability Tactics

4.2.1 Failure Semantics

Based on the architectural drivers and QASes it should be clear that the reason
for introducing redundancy in the wind farm system, is primarily to increase
availability in case of crash and omission failures for the central node. So
in terms of the theory, there are no requirements to handle corruption and
byzantine failures.

4.2.2 Availability Tactics

With respect to the availability tactics described in chapter 3.4 it was mentioned
that the solution as it is today is an implementation of the spare tactics leading
to substantial downtime in case of a crash. The arguments for selecting between
the other three tactics are as follows:

Voting: This tactic is not relevant due to the fact that only crash and omission
failures are to be handled. As explained in chapter 3.4.1 the expensive
voting tactic is only the correct tool to bring on board if the system should
be resistant to corruption failures.

Active Redundancy: In the situation where the stakeholders are unwilling to
accept the tradeoffs of the passive redundancy tactic, and instead strives
for continuous high availability of the system, an active redundancy model
is the only solution. The architectural challenges for this is discussed in
the following chapter 4.2.3.

Passive Redundancy: The pros and cons of the passive redundancy tactic
compared to the active tactic, have already been highlighted. When pair-
ing these with the requirements of the wind farm system, where the real-
time deadlines for the monitoring of sensor values are only soft deadlines,
a passive redundancy model with its simpler implementation seems to be
the right solution. The architectural challenges in applying passive redun-
dancy tactics to different parts of the wind farm system is discussed in
chapter 4.2.4 and 4.2.5.
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4.2.3 An Active Redundancy Tactic

A full active redundancy tactic where all clients and turbine nodes communicate
with a group of farm servers, either explicit via multicast messages, or implicit
using some middleware layer like DSM is unfortunately hindered due to technical
limitations in some of the technologies that are used in the wind farm system.
The limitation lies in the communication protocol between the clients and the
wind farm server. This is depicted on figure 17, where the external group is the
part of the system where there are limits to as how the communication between
the components can be changed. Opposite to this is the internal group that is
entirely under the control of the SCADA development group.

:Client 

{host = browser}

RMI

HTTP

:Wind Farm 

Server

:Wind Turbine 

Node

:Client

{type = third 

party}

HTTP

External Group

Internal Group

Figure 17: The external and internal group in the wind farm system.

The external group from the figure is limited in the following ways:

� The protocol is fixed to HTTP. This can not be changed, both because
the standard SCADA client is running in a browser14 and because an
unknown number of third party clients uses this protocol for the existing
installations.

� The fact that the protocol is fixed to HTTP, implicitly excludes multicast,
and of course also making the client a node in a DSM middleware layer,
unless of course the selected DSM software supports node synchronization
over HTTP.

� The multiple third party client implementations also has the explicit re-
quirement that the system maintains backward compatibility, meaning
that any changes in the protocol must be optional seen from the client
side. So using a kind of passive strategy where it is imposed upon the
clients to actively change to another wind farm server in case of a crash
would be acceptable, as the existing clients will only have to be changed
if they need to benefit from higher availability.

14To give the full story it should of course be said that the case that the client is a browser
DHTML-Ajax based client is not entirely hindering the use of other protocols than HTTP.
Using a browser plugin in form of e.g. an ActiveX-component, a Java applet, a Flash com-
ponent, etc. it would be possible to take advantage of the support in these technologies for
other, more feature rich communication protocols than simple request-response. But in the
scope of the wind farm SCADA system, this is an area that is not up for discussion.
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� Another argument for holding on to the point-to-point HTTP protocol, is
that it is relatively easy to inspect HTTP traffic on the fly in firewalls doing
traffic analysis, as well as in intrusion detection systems. And although
the security of the system is out of the scope of this thesis, it can not be
completely ignored on the out-facing side of the wind farm server.

� Finally it should also be noted that the systems often have only limited
bandwidth reserved for client communication. Wherefore the communica-
tion should not have high ongoing overhead in normal operation (e.g. in
terms of multicasts) just to handle the rather seldom error situations.

So to sum up, the communication in the external group on the figure, is required
to stay as point-to-point communication in terms of HTTP, effectively hindering
the introduction of the active redundancy tactic in this part of the system. There
is one way around this, referring back to how group communication is often
hidden from the clients using front end (FE) components, as it was presented
on figure 14 on page 30 and in the discussions surrounding the figure. All the
above limitations have implicitly assumed that the FE is running in the client
process, thereby assuming that the communication between the FE and the
farm server group was restricted to point-to-point HTTP.

The obvious solution to this is to move the FE out of the client process and
add it as a computing node inside of the wind farm as depicted on figure 18.
If the communication on the backside of the FE (the connector marked with a
question mark in the figure) would also be HTTP, there are several standard
components in form of either a reverse HTTP proxy or a hardware HTTP load
balancer that could take this role. But in this exact system, the reason for
introducing the FE is explicitly not to communicate with the wind farm servers
using HTTP on the backside of the FE, so here the FE must be a component
that is tailor made to act as a bridge from HTTP on the frontside, to the relevant
kind of group communication on the backside, whether in form of multicasts to
the wind farm servers, or in form of communication using some middleware layer
like for example a DSM layer.

:Client HTTP :FE
:Wind Farm 

Server
?

Wind Farm

Figure 18: The front end (FE) component placed inside of the wind farm.

Although it seems to be a decent solution, there are a couple of reasons why
the FE is not feasible in the wind farm system:

New Single Point of Failure: In the naive implementation of introducing a
FE in the system, the new single FE would just be the new single point
of failure. I.e. the “chain” has not gotten stronger, the “weakest link” has
just been moved from the wind farm server to the FE. The arguments to
counter this could of course be that the software complexity of the FE is
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simpler than the wind farm server, wherefore it should not be crashing so
often due to a smaller number of software bugs. Whether correct or not,
this argument does unfortunately not remove the fact that the hardware
running the FE will still be subject to crashes to some degree, just as the
hardware running the wind farm servers.

Additional Hardware: Introducing a new type of hardware in the wind farm
SCADA system is not as simple as it might seem. As it has previously been
mentioned in chapter 4.1.1 on page 40 the process of choosing hardware
components for the system is a relatively conservative process, favoring
stability and time-proven solutions over speed and buzzword compliance.
Due to this, it might very well be impossible to introduce a dedicated FE
computing unit in the system.

So it seems that the only solution in the communication on the externally facing
part of the wind farm server must be a passive solution where the clients only
communicates with one active wind farm server, and must switch to a new
instance in case of a crash15.

4.2.4 A Mix of Active and Passive Tactics

Referring back to figure 17 and the different degrees of freedom for respectively
the external and the internal group, a solution where a mix of active and passive
tactics are used could be another solution. This is depicted on figure 19, where
the communication between the clients and the wind farm servers follows the
passive redundancy tactic, with communication going to the primary server
following the arrow marked with 1 on the figure. Only in case of an error,
communication to the backup server along the arrow marked with 2 is taking
place.
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Figure 19: A mix of active and passive tactics.

15Although such a run time switch is not without challenges in a DHTML-Ajax browser
client, where the so called “same-origin” policy will hinder communication to another server
than the one where the JavaScript was loaded from. Fortunately in this case, this secu-
rity limitation can be worked around using the document.domain property as explained in
[Mahemoff, 2006, pp.250].
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It should be highlighted that there is nothing in this setup that enforces that
there is a global primary wind farm server, it is only seen from a specific client’s
perspective that one of the servers are the primary, and the others are backup
servers, as it is only the per client specific data structures that are passively
made redundant. So one clients primary server, could be another clients backup
server, which opens for using this setup as a workload balancing solution too.
In this case it is of course important to scale the system appropriately to avoid
load-related chain reactions ([Nygard, 2007, ch.4.2]). In short, a crash due to a
load-related chain reaction basically describes the situation where the fact that
one node in a workload balanced cluster goes down, of course followed by its
work being distributed amongst the remaining nodes (e.g. in a 2-node cluster
setup, the workload of the “survivor” node doubles in this case), leads to the
other servers being overwhelmed with work and there after crashing due to too
much work. I.e. a situation where no benefits are actually accomplished in terms
of higher availability.

On the right hand side of the figure, the communication pattern between the
turbine nodes and the wind farm servers follows the active redundancy tactic
where all communication from a turbine node should be communicated to all
wind farm servers concurrently. Conceptually this could be viewed as all the
wind farm servers and one turbine node sharing one distributed memory region,
marked as respectively DSM 1 and 2 in the figure.

It is important to note that since the data structures that must be replicated
across the wind farm servers are per turbine node, there is no reason to create one
large conceptual DSM spanning all turbine nodes, as this would only decrease
performance. The relevant data for the replication in this part of the system,
is the sensor values described in chapter 2.4. In practice all the nodes would
probably be part of the same DSM, but with a virtual segmentation of the
shared memory pages or objects. The important requirement is that the DSM
middleware should make it possible to control that the individual data pages or
objects are only replicated to the nodes where they are required.

To analyse the suitability of this solution it is necessary to verify how it
handles the replication of the relevant data structures presented in chapter 2.4:

Relations: The relations describing what sensor readings are subscribed to by
what clients, are trivially supported by the passive solution on the left
hand side of the figure. Due to the above mentioned fact that there are no
global primary wind farm server, only the individual turbine nodes have
the full picture of the combined set of all the sensor subscriptions for a
given turbine as shown on figure 20 on the following page. To make it
possible for the turbine node to correctly clean up sensor subscriptions
that are no longer referenced from any live wind farm servers a traditional
lease based protocol between farm server and turbine nodes should be used
for sending information about what sensors there are subscriptions for.

Sensor Values: The current sensor values for all currently observed sensors
are the data that should be replicated to all the farm servers by the active
solution on the right hand side of the figure. A DSM solution seems well
suited for this task.

Per Subscription Sensor Values: The values per subscription about whether
a given sensor has changed since last polling for changed values by one
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Figure 20: Due to the fact that there is no globally primary wind farm server, only
the turbine node has the full picture of exactly what sensors are subscribed to (in the

figure labelled (A,B,C)).

client. The passive solution on the left hand side in the system makes it
possible to avoid replication of these proxy objects across the farm servers,
as these data are only relevant at the wind farm server the specific client
uses as primary server. And since these data are the most volatile data in
the system this is a big advantage.

The obvious consequence of using the passive solution on these data, is
that a client can receive already known data once more if changing farm
server. This could be seen as a protocol where a small degree of inconsis-
tency is allowed to get a higher overall performant system.
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Figure 21: A client changing primary wind farm server, due to a farm server crash.
As it is seen this can lead to the client seeing a range of old values for sensors.

Coherence Consistency: As seen on figure 21 the nature of multicast mes-
sages also makes it possible that a client will observe a range of old obsolete
values when changing from one server to another. A situation that can
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not be ignored as just an innocent data inconsistency problem16. This
is where the theory on memory consistency must be applied. But as this
scenario is special in that only one “writing” process (the turbine node) for
each sensor exists, there is a trivial solution for this as the data only need
to be ordered per turbine node, and not be globally ordered. The simple
solution is to let the “writing” turbine node attach a timestamp to each
value it sends to the farm servers, thereby in effect applying coherence
consistency of the data. This solution is basically applying a traditional
message sequence number, and whether a simple counter or a full times-
tamp is used is not vital to the working of the mechanism. But for other
usages in the client (such as to be able to visually show age of data) a
timestamp might be preferable. Selecting a timestamp of course requires
that it is strictly non-decreasing, so no local time with daylight time sav-
ings or other jumps backward in time is allowed. So something like UTC
time would be preferable.

To sum up the above discussions figure 22 attempts to label the different data
structures from figure 13 on page 22 with information on what kind of redun-
dancy tactics are used on each structure.
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Figure 22: The different types of redundancy and what data and relations they span
over, across clients, wind farm servers and turbine nodes.

4.2.5 A Passive Redundancy Tactic

The final proposal for a solution would be to use the passive redundancy tactic
on the entire system, i.e. also for the communication between the wind farm

16The opposite scenario, where a client misses some values on a server change is of course
also possible. But since the values represent states and not operations on state such missed
values are not a problem.
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servers and the turbine nodes. Thinking about such a solution, there does not
seem to be any obvious problems as to why this should not be able to fulfill
QAS1 - 3 as the 5 seconds failover time in QAS1 should be plenty of time to
detect a failing farm server, elect a new active server and propagate state to
the new active server. Furthermore such a solution would probably be the least
intrusive with respect to the existing system, which might make it the most cost
efficient in terms of implementation effort and complexity.

Although the above sentences might give the impression that a passive so-
lution is entirely trivial to implement, this is not the case. There are still quite
a few architectural challenges that will have to be considered to implement a
solid solution. These challenges are described below.

Crash Detection: The first problem is for the passive node to detect when
the primary node has crashed. For this one of the fault detection avail-
ability tactics from [Bass et al., 2003], like ping/echo or heartbeat would
be obvious candidates for solutions. If network partitions inside of a wind
farm must also be handled this crash detection suddenly becomes a hole
lot harder. A part of the crash detection problem, is also the problem of
election of the new active node, in case of a system where more than one
passive node should act as takeover system.

State Propagation: When the passive redundancy tactic was described in
chapter 3.4 it was mentioned that in a system with passive redundancy
it should be decided how much shared state that should continuously be
synchronized between the active node and the passive node(s), and how
much state that should lazily be loaded from for example shared persistent
storage on the time of takeover. In the wind farm system with its relatively
simple data structures at the wind farm server, the best solution seems to
be, to let the connected clients all resubmit their subscription requests at
a takeover situation, meaning that no continuous synchronization between
active and passive node(s) has to happen, with respect to the subscription
states17. It is of course obvious that the requirement that the clients should
be able to resubmit all subscription calls, puts an additional burden on
the logic in these. Furthermore it means that the handling of the failure of
a crashed active node, is propagated to elements in the system that would
perhaps benefit by being shielded from this. So whether it is wisely to
make the decision to include the clients in handling the takeovers is not
entirely clear. Another argument against this decision, is that the clients
are not always created by the manufacturer of the SCADA system, as
some of the clients are third-party integrations. Meaning that it is harder
to verify that all the possible clients actually behaves according to the
rules, and will be able to handle the takeover situations correctly.

17There is other state that has to be continuously synchronized though. Most obviously the
information on active sessions, and the information related to those such as authentication,
authorization and session token information. But this is outside of the scope of this thesis.
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4.3 Applying the Replication Theory

4.3.1 The Types of Replication Messages

With respect to the distinction between replicating state or operations on state
as described in chapter 3.5.1 it is easy to see that for the wind farm SCADA sys-
tem the messages sent from turbine nodes to the farm server contains the current
state, i.e. current values for a list of sensors. With respect to the subscription
modification messages sent from the clients to the farm server the opposite is
the case, as these are actually operations on the overall subscription states in
the farm server.

4.3.2 Failure Semantics for the Group Communication

The group communication required especially in the active redundancy tactic
makes it necessary to consider how the theoretical areas described in chapter
3.5.2 and 3.5.3 applies to the system.

Group Size: As only crash and omission failures should be handled, and as the
system needs to be tolerant to 2 concurrently failing farm server nodes,
the group size of the farm server nodes is 3.

Group Membership: The physical layout of a wind farm is very static, lead-
ing to the observation that static group membership is sufficient for the
SCADA system. Furthermore as there are no transactions in the system
there is no need for groups views or other complex group concepts.

Multicast Reliability: Since the internal group of the system where multi-
cast of messages might be used is a LAN, it will make sense to consider if
raw IP-multicast communication is suitable, as LANs usually gives a high
delivery guarantee, even for IP-multicast messages.

Furthermore as the architecture does not handle the scenario where the
network is segmented in a way where a client can only connect to a farm
server node that is in a network segment where the communication to the
turbine nodes is down, it probably does not make sense to use an expensive
reliable multicast protocol between the farm server nodes and the turbine
nodes.

For each of the individual practical solutions described in chapter 6 these areas
will be elaborated upon when there are detailed information about these.

4.3.3 Memory Consistency Models

As the sensor values are the only replicated data when an active redundancy
tactic is used in the internal group (as seen on figure 22 on page 48), it is only
relevant to consider the memory consistency model for this set of data. For
these data it should be observed that there is only one “writing” process per
memory location, as one turbine node is responsible for collecting data for its
own sensors, where the current value of one sensor can be seen as one memory
location.
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This property together with the business fact that there is no requirement
for globally ordered data, but only a requirement that the data from each indi-
vidual turbine must be strictly ordered, makes it easy to accomplish coherence
consistency by applying the message sequence number mechanism described on
page 47.

If the solution is implemented using a DSM instead of explicit multicast
messaging this means that a hybrid per entry consistency mechanism will be
sufficient, as this granularity leaves room for optimizations at the higher lev-
els. This will let the higher levels communicate knowledge of batching updates
together in one flush write operation to the DSM system.

5 Solution for the External Group

As described in chapter 4.2 and shown on figure 19 on page 45 a simple passive
redundancy tactic must be used for the external group. In this chapter it is
described how this is actually implemented - an implementation that is shared
by all 3 prototypes described in the following chapter 6.

First in chapter 5.1 it is described how a client node detects that the currently
active farm server node it is using has crashed. After that, in chapter 5.2,
the recovery procedure with electing a new active farm server and transferring
relevant state to that, is described.

5.1 Failure Detection

In the external group a client must detect if the wind farm server node it is
using as the active server is crashed. Due to the poll-based mechanism for event
callbacks described on page 16 this is straight forward, as a missing response
to a read-call will let the client node deem the wind farm server node as being
crashed. This mechanism is shown on figure 23.
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:Turbine Node

notify(sensor1 = 3.1415)
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{ sensor1 = 3.1415 }

read(token)

Missing response on read()

Crash

Figure 23: Client failure detection of a crashing wind farm server node.

5.2 Recovery

When a client detects that its active wind farm server node is crashed the
recovery process must be initiated. In the external group this happens in two
steps shown in figure 24 on the next page:
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Election: Selecting a new active wind farm server node is done by trying to
connect to all 3 farm server nodes in parallel. The server that answers
first wins the election and is selected as the new active server for the
client. This simple algorithm has the side effect that the work load when
a high number of clients are present, will be distributed across the alive
wind farm server nodes, as lightly loaded nodes will typically answer faster
than heavily loaded nodes.

State Transfer: For the external group the only state that must be transferred
to the new active wind farm server is the information on what sensor values
the clients using this server are subscribed to, i.e. the so called relations as
described in chapter 4.2.4. This is easily done by letting the client resend
it’s active subscription information to the newly selected server.
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read(token)

subscribe(sensor1)

{ token }

Election algorithm: HTTP connect in parallel

HTTP connects

{ first connect ack }

subscribe(sensor1)

{ ignored connect ack }

The first connected server is selected as new 

active server for the client (here server 3).

Later connect acks are ignored.

Crash

Figure 24: Election algorithm for selecting the new active wind farm
server node for a client.

With respect to the election algorithm it should of course be mentioned that
the only reason why it is possible to do the election in parallel and just ignore
the servers answering “late”, is because the HTTP connect calls does not change
any state on the wind farm servers.

6 Solutions for the Internal Group

To implement the different possible redundancy tactics for the internal group
described in chapter 4.2 several different solutions exists in the Java space. This
chapter documents 3 prototypes implementing these tactics in different ways.

To view these solutions from a higher perspective this chapter sets of with
a short description on how it is possible to add the new availability qualities to
the existing system using either transparent wrappers or explicitly using toolkits
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(chapter 6.1). This leads to two different prototypes implemented with either
of these two solutions:

� A solution with a DSM region per turbine using a passive redundancy
software product [Terracotta] described in chapter 6.2. This started of
as a transparent solution, but due to lacking performance it had to be
changed to an explicit solution using a Terracotta specific API.

� An explicit solution using network multicast using the software product
[Hazelcast] described in chapter 6.3. This leads to an active redundancy
solution.

Thereafter in chapter 6.4 a prototype based upon the end-to-end principle with
“soft state” is implemented by manually extending the existing system using
standard Java Development Kit (JDK) network APIs.

To follow the discussion of these 3 prototypes it is an advantage to be at
least somewhat familiar with the Java platform and the central APIs in the
JDK. The source code for the 3 prototypes are available in the source archive
for this thesis.

Finally a number of other possible technical solutions are shortly described
in chapter 6.5.

The actual evaluation of how each of the 3 prototypes fulfills QAS1 - 3 is
done in chapter 8 using the test bench described in chapter 7.

6.1 Transparency of the Solutions

[Birman, 2005, ch.20] describes retrofitting reliability onto existing systems. As
part of this he touches on how different kind of solutions requires different de-
grees of modification of the existing system. Basically he distinguishes between
two groups of solutions:

Wrappers: The ideal goal of a wrapping solution is to transparently wrap
the existing software and thereby applying the target availability quali-
ties without having to modify the existing software at all. This ideal is
similar to the transparent wrapping that takes place several places in the
TCP/IP network stack, for example a thing such as encryption in form of
TLS/SSL can be applied transparently, typically without having to modify
the application using the network stack. Birman describes several differ-
ent wrapping techniques, that are not necessarily all equally appropriate
given the technology used in the wind farm system:

� Wrapping at object interfaces: At first glance this wrapping
technique seems adequate in a object oriented Java world. And it
would surely be if the existing system had been implemented in a
way where all communication has been hidden away from the ap-
plication logic, e.g. in form of Java enterprise beans where the JEE
container typically makes it entirely transparent for the individual
beans whether they are communicating with other beans as local or
remote objects. In the existing wind farm system, the communica-
tion is already made explicit though, so solutions that uses wrapping
at object interfaces does not seem as obvious candidates.
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� Wrapping by library replacement: This is typically a technique
used in systems build in traditionally linked programming languages
such as C, C++, Pascal, etc. Basically it describes the concept of
changing the overall system properties by changing which libraries the
system are linked against (whether dynamically or statically linked).
This technique is not relevant to apply in the Java world18.

� Wrapping by object code editing: This technique is even more
intrusive than wrapping by library replacement, as this requires mod-
ifying the programs object code. In programs compiled for a specific
target OS and platform, this object code is typically represented in
form of processor specific machine instructions. The same applies
to programs running in a VM, where the machine instructions are
instead just VM specific (e.g. in Java, in form of Java byte code, and
in the Microsoft .NET platform in form of Common Intermediate
Language (CIL)).

Toolkits: Where wrappers in their purest form does not require modifying
existing code, the toolkit approach is entirely opposite, as this requires
rewriting the application to explicitly take advantage of the toolkit by
using the API and protocols it offers.

It should be clear that these two types are at opposite ends of the spectrum of
possible solutions, and that different kinds of mixed solutions also exists. Since
the wind farm system, as mentioned already uses explicit remote communica-
tion, it would of course require modification of the code in the system to use
a wrapper solution, in which case it is of course no longer a pure wrapping
solution.

A word of caution on the wrapping solutions seems appropriate though,
since as it is always the case when the distributed mechanisms in a system
are completely hidden and transparent to the programmers one should be a
little bit skeptical as described in both the classical critique of transparency in
[Waldo et al., 1994]’s Note on Distributed Computing as well as in less academic
terms in the law of leaky abstractions ([Spolsky, 2004, essay 26]). It might very
well be easy to create a distributed application without detailed knowledge of
the underlying details, but if done naively it might fail and burn in flames at the
worst possible time when put under heavy load in the production environment,
or have unexpected failure scenarios when the underlying network details leak
through the abstractions in unexpected ways in case of network errors. Of course
this should not be seen as a praise entirely against abstractions and frameworks
striving for full transparency, but more as a word of warning, that even though
it might look easy, it is still required that the development team has an intimate
knowledge of what is actually going on in the internals of a given framework.

Along the same skeptical line is Birmans words on the fact that wrapping
solutions traditionally are more limited than explicit toolkit solutions. But of
course as always the cost of choosing a toolkit over a wrapping solution should
be weighted.

18Although this is actually what happens at JVM level when one changes between the
so called client and server VM (with the java -server or -client options). This changes the
implementation and behaviour of the VM by using two different dynamic link libraries.
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6.2 A Passive Redundancy DSM-Based Solution Using
Terracotta

The first prototype is a DSM-based solution that is build using [Terracotta].
The source code for this prototype is available in the source archive for this
thesis in the source/terracotta folder. Besides the 4 standard project modules
described in appendix C (client, server, node and common) the folder contains
the Terracotta 3.5.1 release used in the prototype.

The Terracotta project is a platform covering a suite of solutions in the area
of distributed objects on the Java platform. Of these solutions a distributed
cache product, called Ehcache is the main product. But in the context of this
thesis the Terracotta project is mostly interesting because of the underlying
technology upon which their entire solution suite is build. A technology coined
“network attached memory” (NAM) depicted in figure 25. In [Terracotta, 2008]
this is described in overall terms as:

At its core, Terracotta’s goal is to allow several computers to com-
municate with each other as if they were one big computer through
memory and pure memory constructs, such as threads and locks (mu-
tex objects and the like).
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Figure 25: Terracotta Network Attached Memory (NAM).

As it should be clearly visible from the figure this is actually a DSM system,
although coined with their own fancy term. The innovative and exiting about
Terracotta NAM is their implementation of the memory consistency model,
which is described in the sections below together with the other technical prop-
erties of the Terracotta platform.

Passive Redundancy: Terracotta is a classical implementation of a passive
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redundancy solution working with an active node, and one or more passive
nodes.

Memory Structure: A DSM has to make some kind of “memory chunks”
available to the processes using the DSM. Traditionally the different DSM
implementations has fallen into one of three groups:

� “byte oriented” making the raw memory bytes available to the pro-
grams. This is of course mostly suitable in low level programming
languages like C.

� “object oriented” making the “chunks” of memory in the DSM visible
as some kind of objects to the programs.

� “tuple oriented”where an explicit API are to be used by the programs
using the DSM. This will consist of atomic operations like “write”
(add a tuple to the space), “read” (read a tuple), “take” (read and
remove a tuple). The explicitness of the tuple oriented solutions are in
contrast with the other two solutions where it might not be explicitly
visible for the programs whether they are working on a byte structure
or object that are part of the DSM or whether it is traditional local
memory.

In Terracotta the object oriented concept is used, where the shared ob-
jects are called “distributed shared objects” (DSO). Seen from the Java
programmers view the DSOs are not in any way different from traditional
Java objects.

The decision of which objects should be distributed in the NAM is made
by configuration of Terracotta where one or more objects are configured
as so called “root”-nodes, and any object reachable from a root node are
distributed and part of the NAM. Where the concept of reachable is the
well known concept used in many other computer science areas, such as
tracing garbage collector algorithms, and serialization algorithms such as
the standard Java Serialization.

Memory Consistency Model: The memory consistency model used in Ter-
racotta is a hybrid model that falls into the category of entry consistency
models. As the entry consistency model leaves it to the programmer to
control the exact fence and lock operations this seems to be contrary to
the previous claims about the solution being a transparent wrapper. This
is solved in Terracotta by extending the standard Java synchronization
mechanisms so that these in a Terracotta solution no longer is used only
for local JVM synchronization between memory reads and writes from dif-
ferent threads, but instead is used for DSM wide memory synchronization.

Implementation: Terracotta is clearly a wrapping solution, where the trans-
parency to the programmer is implemented by runtime bytecode injec-
tion of the byte code for the DSO objects. Runtime bytecode injection
works by modifying the Java byte code for the relevant classes as part of
classloading, whereby it in the Birman taxonomy places Terracotta as a
wrapper implementation in form of wrapping by object code editing. In the
later versions of Terracotta the bytecode instrumentation solution seems
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to be deprecated in favor of standard Java Serialization as this should offer
better performance.

State Transfer: The transferring of memory state between nodes in the DSM
in Terracotta can be fine tuned to use either transferring of full object
state, or to record operations on state, and transfer these operations to the
different DSM nodes and apply the operations locally. In the prototype
build here transferring of full object state has been used.

6.2.1 Implementation Notes

Since the original code used explicit network callbacks to communicate sensor
values from the turbine nodes to the farm server, this part of the application
had to be changed to use a standard Java ConcurrentMap instead, and then let
Terracotta handle the job of distributing the values in this map transparently
to all relevant nodes. This change is depicted on figure 26 which is a copy of
the original figure 5 on page 14 with the changed parts marked in red.
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Figure 26: Component and connector diagram for the Terracotta based prototype.

It should be noted that a map instance exists for each turbine node leading
to the DSM being segmented into several regions as depicted on figure 27 on
the following page.

The prototype started out by being a completely transparent wrapping solu-
tion by using the Terracotta configuration files to mark the map instances that
should be part of the DSM as “root”-nodes in Terracotta vocabulary. Although
this seemed to work fine in small scale with 3 nodes (one of each type), the
performance when put on the test bench described in chapter 7 was lacking.
After trying to resolve this purely by optimizing the Terracotta configuration
it was therefore attempted to change the prototype to use the explicit Terra-
cotta Toolkit API described in [Terracotta, 2011, ch.7]. Basically this gives the
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Figure 27: The DSM is segmented into one region per turbine node.

source code access to use some Terracotta optimized concurrent collections as
the “root”-nodes.

6.2.2 Analysis of Pros and Cons

As described in detail in chapter 8 the attempts to get the Terracotta based
prototype to fulfill any of the QASes failed. This in itself of course disqualifies
the prototype, but the pros and cons of it are listed below anyway.

� The usage of the standard Java synchronization primitives for the memory
consistency is a clever solution making it a good fit for programmers used
to concurrent programming in Java as it follows the same line of thought
as the standard memory model in the JVM as described in [JSR-133, 2004]
and [Goetz et al., 2006].

� The Terracotta documentation describes only running the Terracotta servers
in separate JVM instances. This in itself is not optimal for the wind farm
SCADA system, as it either requires new dedicated hardware nodes or
that the wind farm server nodes runs two JVM instances, one with the
SCADA program and one with a Terracotta server. After a bit of exper-
imentation it was possible to host the Terracotta server as a component
in the wind farm server instance though. It should be mentioned that
integration with the startup and shutdown of the embedded Terracotta
server is a bit rough.

� The Terracotta platform is quite big, which of course could be interpreted
as both an advantage in that it can probably solve a multitude of problems
if one is very familiar with the configuration options and its inner working.
On the other side it is a disadvantage if one wants to use only a specific
functionality of it in an existing system as there is a big payload both in
form of concepts and documentation (of which quite a lot is not relevant
to the usage here) and in form of a big binary payload, where the jar file
containing the wind farm server node went from approximately 1 MB to
33 MB and the startup time of a server node went from 1-2 seconds to 20
seconds.
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� As described on page 54 there are certain risks in using a completely trans-
parent wrapping layer or toolkit for something that is inherently hard, and
that is exactly what was experienced when working with the Terracotta
system. It was seen that the performance was not as expected, neither in
the normal situation with everything running stable, nor in the situations
with crashes, but although extensive debugging and manual reading was
done, it was not possible to find out exactly what happened and went
wrong. The only thing that could be observed was extensive network traf-
fic (which as described in details in chapter 8 was orders of magnitude
larger than for the other prototypes) and measurements showing that the
memory consistency was not as expected.

As a concluding remark it should be said that although it was a failure to get
Terracotta to perform in the prototype, this should probably more be attributed
to missing competences of the author of this thesis, than to Terracotta itself, as
it has otherwise been given impressive reviews in the press.

6.3 An Explicit Active Redundancy Solution Using Hazel-
cast

The second prototype is an active redundancy solution build using the multicast
features of [Hazelcast]. The source for this prototype is available in the source
archive for this thesis in the source/hazelcast folder. Besides the 4 standard
project modules described in appendix C (client, server, node and common) the
folder contains the Hazelcast 1.9.3 release used in the prototype.

Hazelcast is a Java library with APIs making it easier to build clustering and
distributed network communication into applications. It contains a multitude of
features that can be used individually. A few of these features are listed below
in the words of the [Hazelcast, 2011] documentation:

� Distributed implementations of the standard Java collections: java.util.{Queue,
Set, List, Map}.

� Distributed Topic for publish/subscribe messaging.

� Support for cluster info and membership events.

� Dynamic discovery.

� Dynamic failover.

The technical properties of the Hazelcast library is described in broad in the
following sections, although only the multicast functionality has been used in
the prototype:

Active Redundancy: Hazelcast is a pure active redundancy solution working
with no dedicated master node. For the distributed java collection imple-
mentations the data is distributed evenly across the nodes, with a backup
placed on one other node. For the map-type this for instance means that
all calls to access a range of the keys for the map hits one server “owning”
this range of the keys.
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Memory Consistency: For the distributed collections it makes sense to con-
sider memory consistency. The default settings in Hazelcast gives a very
strong sequential consistency guarantee for each individual collection, im-
plemented using the mechanism with each server owning a part of a col-
lection as described above.

Multicast: The com.hazelcast.core.Topic class makes it possible to send ordered
multicasts. Based on the documentation it is unclear exactly what order-
ing guarantees are given by the implementation, but for the usage in the
wind farm SCADA system it has been trivial to manually ensure the re-
quired FIFO ordering on top of the Hazelcast multicast by letting each
turbine node include a timestamp in the sent messages. A solution that
of course only guarantees ordering because there is only one “writing” tur-
bine node for each sensor. For the reader familiar with the Java Message
Service (JMS) API it should be noted that the Hazelcast Topic is not
an implementation of the JMS Topic-class, although both has the same
overall usage scenario of publishing a message to several subscribers.

6.3.1 Implementation Notes

Since the original code used explicit network callbacks to communicate sensor
values from the turbine nodes to the farm server, it was trivial to change the
sending end (the publish service) to publish callback messages to a Hazelcast
Topic and then let the Hazelcast library take care of distributing the callbacks
to all alive wind farm servers. In the wind farm server end, it was also simple to
change the turbine observer service from being marked as a Java RMI remote
callable class to implement the Hazelcast MessageListener interface, and register
the instance for messages on a the topic. One global topic for all messages from
any turbine node is used in the prototype.
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Figure 28: Component and connector diagram for the Hazelcast based prototype.
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The changes described above is depicted on figure 28 which is a copy of the
original figure 5 on page 14 with the changed parts marked in red.

Although the changes in figure 28 seems similar to the changes done in the
Terracotta based prototype, it should be stressed that it was a lot simpler to
implement the Hazelcast prototype, primarily due to the fact that the solution
is a straight forward evolution of the original unicast solution to a multicast
solution.

6.3.2 Analysis of Pros and Cons

As it will be described in chapter 8 the Hazelcast based prototype in general
is close to fulfilling the QASes, although there is at least one bug in either the
Hazelcast library itself or in the usage of the library in the prototype that will
need to be found and removed before the prototype will be usable in the real
solution. The pros and cons of the Hazelcast prototype are given below.

� Hazelcast is a pure library, and not a platform in itself. For existing
systems like the wind farm SCADA system, this makes it a lot simpler to
embed, and pick just the requested features.

� The fact that Hazelcast is an explicit toolkit and not a transparent wrapper
of course increases the coupling of the system to Hazelcast. But for all of
the distributed collections offered by Hazelcast it should be said that these
of course implements the standard interfaces found in the Java Collections
Framework, although this is not the fact for the multicast functionality
used in the prototype.

� The multicast feature in Hazelcast makes the prototype really simple,
when compared to all the manual state-keeping and manual asynchronous
callbacks that had to be implemented in the hand coded prototype de-
scribed in the next chapter. Seen from the programmers view a lot of the
“heavy manual lifting” is removed by using the Hazelcast library.

� The payload of the used features of the Hazelcast library are minimal
when compared to the Terracotta platform. This goes both for the binary
payload as well as for the server startup time.

� The documentation of the Hazelcast library is well balanced between in-
formation that focuses on how to use Hazelcast, and information about
the lower level technical details about how it is actually implemented. It
should be said though that for the multicast features used in the proto-
type, the documentation on the low level technical details, for instance
with regards to the ordering guarantees, is missing.

To summarize it can be said that it was all in all a pleasure to implement the
Hazelcast based prototype, and at first it was also considered to be on par with
the hand coded prototype described in the following chapter, but as it will be
described in chapter 8 a couple of often occurring bugs that makes it fail in
fulfilling the QASes, was found.
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6.4 An End-to-End Solution with Soft State

The third prototype is a handcrafted solution that is neither based on active or
passive redundancy of the central wind farm server state, but instead is build
upon the end-to-end principle described in chapter 3.2 and chapter 4.1.

The prototype is build without the help from any third party libraries,
and build entirely with the standard JDK network and thread APIs. The
source for the prototype is available in the source archive for this thesis in
the source/end2end folder.

6.4.1 Conceptual Description of the Solution

As described in chapter 4.1 the obvious end-to-end based solutions with no state
at all on the wind farm server nodes are unsuitable for the SCADA system. But
as described in [RFC 3724] it is possible to build a solution fulfilling the end-
to-end principle by storing only recomputable state, or so called “soft state” at
nodes between the end-point nodes.

This is the exact idea behind the solution in the third prototype, making
it possible to view the redundancy in the solution as a form of “redundancy in
network routes”, i.e. if a wind farm server crashes, the individual clients should
independently determine a new route over another wind farm server, to the end
turbine nodes.

The main algorithm is best described as:

1. Let all turbine nodes register to all live farm server nodes. Seen from the
turbine nodes, the farm server nodes should just be seen as independent
clients subscribing for sensor value callbacks.

2. In case a turbine node detects that a farm server node is crashed, all state
related to that farm server node should be thrown away from the turbine
node.

3. The passive redundancy tactic used in the external group (described in
chapter 5) should then automatically move the crashed subscriptions to
one or more live wind farm servers, without involving any explicit work on
the turbine nodes, or without any state having to be replicated between
the wind farm server nodes.

A sequence diagram showing an example of this, where two clients subscribes to
a set of 3 sensor values from the same turbine node is shown on figure 29 on the
following page. The diagram shows how the two clients starts by using the same
wind farm server (no. 1). After this wind farm server crashes, the two clients
independently selects two different wind farm server nodes for re-establishing
the communication to the turbine node (shown as the red circle numbered 1).

The diagram also depicts the changes in the callback state stored at the
turbine node. At the time where the turbine node detects the crash of wind farm
server 1, the state for this server is thrown away on the turbine node (marked
with the red circle numbered 2). Finally the red circle numbered 3 describes
the re-established state at the turbine node after the clients have re-subscribed
using respectively server 2 and 3.
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Figure 29: Sequence diagram for the main mechanism in the handcrafted prototype.

6.4.2 Implementation Notes

Extending the wind turbine node source code to explicitly keep track of the sub-
scriptions from a number of wind farm servers is a natural evolution of the orig-
inal solution where a single wind farm server node exists. The main challenging
part of the solution was to keep track of the parallel non-blocking communica-
tion that it was necessary to introduce. This parallel communication is of course
necessary as a single non- or slow-responding wind farm server would otherwise
degrade the performance of the entire system. As the RMI communication
used between the wind farm server and the turbine nodes does not allow for
asynchronous non-blocking communication it was necessary to build this com-
munication pattern manually using standard multi-threaded programming. In
the source code for the prototype this manual multi-threaded code is particularly
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present in the turbine module in the dk.accel.misw.mp.model.node.impl package,
that is littered with usages of Executors from the JDK java.util.concurrent pack-
age.

The crash detection, where a turbine node detects that a wind farm server
has crashed is easily implemented as this is signaled clearly by the standard RMI
mechanism. Upon detecting such a crash the turbine node dismisses all state
about relevant sensor subscriptions previously made by the crashed server, and
waits for one or more other wind farm servers to establish these subscriptions
as the clients re-establishes the communication through these wind farm server
nodes. Separately from this the turbine node repeatedly attempts to connect to
the crashed server again, to signal to it that its subscriptions has been dismissed.

This last step where the turbine node actively attempts to signal to the
crashed farm server is important, since it would otherwise be possible to see
a situation where a temporary communication disruption between a wind farm
server and a turbine node, would lead to the turbine node dropping the callbacks,
and the farm server just waiting indefinitely for the callbacks.

6.4.3 Analysis of Pros and Cons

As it will be described in chapter 8 this prototype is successful in fulfilling all
the QASes, but is does have it negative sides anyway. So below follows the pros
and cons of this prototype.

� The solution can be seen as simple, as there is no multicast operations
involved and no active or passive redundancy. But at the same time the
solution can be seen as complex, as the success of the availability of the
solution highly depends on all 3 node types “playing by the rules”, as they
are all involved in re-establishing the overall correct system state when a
wind farm server node crashes.

� From the turbine nodes perspective the system is really just a network
of clients, as the multiplexing of sensor subscriptions on the wind farm
server nodes, makes the end client nodes “invisible” to the turbine nodes.
Furthermore it simplifies the logic on the turbine nodes that it should just
throw away the subscription state related to any crashed wind farm server
node.

� The implementation of the communication between the wind farm server
and turbine nodes is tedious and requires a high degree of attention to
the small details, to juggle the multi-threaded programming related to
the asynchronous communication, to make sure that a crashing node does
not block communication to other live nodes. So although the prototype
shows it to be possible, there is a risk that a solution based upon this code
will be a hassle to maintain and evolve over time, as there are quite a lot
of small details in the communication to keep in mind.

� As the prototype is created with a very specific problem in mind, there
is absolutely no handling of other plausible network problems, such as for
instance network segmentation. This does not say that this is necessarily
handled gracefully in the two other prototypes using third party code, but
there is at least a bigger chance that some of the failure scenarios are
actually handled in a well defined way out of the box by these solutions.
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6.5 Solutions Not Evaluated

A number of other technical solutions could have been selected for building the
prototypes. The most obvious of these are listed below:

Gossip Architecture: The Gossip architecture is described in overall terms
in [Coulouris et al., 2005, ch.15.4]. It is an implementation of the active
redundancy tactic with the update propagation between the redundant
nodes taking place lazily in form of so called “gossip messages”. Coulouris
et al. points out that the architecture is inappropriate for updating replicas
in near real-time due to the lazy communication, and that a solution
based upon multicasts will be more appropriate. This is exactly what the
Hazelcast based prototype is.

Distributed Event System: Instead of manually building the end-to-end so-
lution with soft state it might have been worth looking at a framework for
building a distributed event system as described in [Coulouris et al., 2005,
ch.5.4]. This would have automatically lifted the task of asynchronous
communication that was hand coded in the end-to-end based prototype.
In the Java world it would be obvious to look into an implementation of
the [Jini] specifications for such a system.

Message Bus Architecture: [Birman, 2005, ch.11.6] describes an architec-
ture called the “message bus architecture” that can be used for commu-
nication in an active redundancy architecture. The superficial inspection
that was performed of this, indicates that it is similar to the JMS Topic
in the Java world, which can be used for multicasts. This makes such a
solution similar to the explicit multicast architecture used in the Hazelcast
based prototype.

7 Test Bench and Test Method

To be able to evaluate how the different architectural prototypes fulfill the re-
quired QASes for the system in a consistent way, this chapter describes the test
bench that has been used for testing the solutions. This includes information on
the physical setup, the receipt for running the tests, and finally a description of
the method that will be used for measuring and examining the measured results.

7.1 Physical Setup

The deployment diagram in figure 30 on the next page shows the hardware
components in the system. Of these the turbine RFC and the OPC server is of
no interest in the scope of this thesis, and since these components only works
if they are hooked up to the network bus-system in a physical wind turbine,
and it is trivial to simulate sensor readings in the wind turbine service, this
hardware component has been left out of the test bench. Due to this simulation
of sensor readings the requirement that binds the wind turbine service to run
on a Windows machine also disappears.

Removing these requirements to the test bench, makes it possible to build the
entire system using a fully virtualized solution where several virtual machines
shares physical hardware. This offers a good price and time tradeoff compared to
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Figure 30: Deployment diagram (same as figure 8 on page 17)

manually building a test laboratory with 18 physical nodes. Today several ven-
dors offers services for running a large number of virtual machines on their server
farms, and for this thesis Amazon Elastic Compute Cloud ([Amazon EC2]) has
been chosen, using Ubuntu 10.04 instances to host the JVMs running the soft-
ware.

7.1.1 Number of Nodes

Based on the QASes and the availability theory the number of nodes in the
system can be easily calculated to

� 3 wind farm server nodes.

� 10 wind turbine nodes, each with 50 sensors.

� 5 client nodes, each subscribing to 100 sensors (10 from each turbine node).

7.1.2 Practical Problems in Managing the Nodes

The most basic interface Amazon EC2 offers for managing virtual nodes is
through a simple web-interface. When managing 18 nodes this interface is cum-
bersome, but fortunately Amazon EC2 also offers APIs for several languages
to manage nodes. This makes it possible to build scripts to launch and upload
software to the individual nodes from one central workstation as depicted on
figure 31 on the following page.

The central workstation is also used to automate the test setup and test runs
in a repeatable way, as it controls both the EC2 nodes and the target applications
running on them, using a controller application that makes it possible to start,
stop, initialize and fetch log files from the target applications. This is depicted
on figure 32 on page 68. The programs and scripts for this are described in
details in appendix D and E.

7.1.3 Potential Problems in a Virtualized Solution

Although virtualized solutions such as Amazon EC2 seems optimal for easily
testing distributed systems with a large number of nodes, such as the wind farm
system, there are certain potential problems that must be considered. This is
due to the fact that the overall system when using a virtualized solution seems
less deterministic when compared to a tightly controlled number of physical
nodes. There are several factors for this:
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Figure 31: Managing the nodes using a single workstation.

Sharing of Hardware Resources: In a virtualized solution some test runs
may share the underlying physical hardware with other virtualized nodes
that are highly computational intensive, whereas at other test runs the
physical hardware may be almost idle with respect to other virtual nodes.

No Control of Actual Distribution: In a virtualized solution like Amazon
EC2 the user does not have any way to control whether the virtual nodes
are running on different physical hardware nodes, or whether they are
clustered on only a few hardware nodes.

The remedies to avoid these potential problems to skew the test results and
conclusions are two fold:

1. The tests must be repeated several times, where the test runs must be
distributed over a large time period. Furthermore the tests for the different
solutions should be run on the same virtual machines immediately after
each other.

2. Measure and record native performance counters that may indicate or
reveal factors about the underlying hardware. E.g. measuring network
packet round-trip times between the nodes may show that some virtual
nodes are clustered in a way that indicates that they are running on the
same physical piece of hardware.

There is one academic article, [Ristenpart et al., 2009], that describes mecha-
nisms for detecting whether two virtualized nodes in Amazon EC2 is running at
the same physical hardware node, or co-residence as it is termed by Ristenpart
et al. They describe how Amazon EC2 uses a so called Xen hypervisor as the
base “operating system” on the physical nodes, and how the Xen hypervisor
reports itself as a network hop in traceroutes. Ristenpart et al. labels this node
the Domain0 (Dom0) node.

Based on the description of the Amazon EC2 setup (which it should be
said is interpolated from their external measurements, as nothing in the article
indicates that the researchers have any inside information from Amazon), they
point out 3 different checks for proving co-residence:
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Figure 32: Managing the EC2 nodes and the target applications on them using a
standalone controller application running on the EC2 nodes.

1. Matching Dom0 IP address.

2. Small packet round-trip times.

3. Numerically close internal IP addresses (e.g. within 7).

With respect to check number 1, it does no longer seem to be the case that the
Dom0 nodes in Amazon EC2 reports as network hops. This also seems plausible
as one of the recommendations in the Ristenpart article which takes a security
perspective, is that Amazon should disable the Dom0 as reporting as network
hops.

With respect to check number 2, Ristenberg et al. does not quantify exactly
what“small” is. But nevertheless the relevant information has been recorded and
is shown in figure 33 with respectively the number of network hops as reported
by traceroute and network round-trip times as reported by the hping tool19 for
one of the test runs.

Analysing the figures does not reveal any critical outliers where it could be
expected that two nodes are co-located, although there are 4 pair of nodes where
there are no intermediate network hops (i.e. the number in the figure is 1). But
there does not seem to be any correlation with extremely low network round-trip
times for these 4 pairs of nodes.

Finally check number 3 does not fit the type of EC2 instances, micro, used
in this thesis, as this type is a new and smaller type than what was present
when Ristenpart et al. did there measurements where they used the so called
small type. So it must be expected that more than 8 virtual nodes of type micro
shares the same physical node.

19Hping is used instead of standard ping, as hping makes it possible to send IP packets
instead of icmp packets. And there are indications (but no clear evidence) that Amazon down
prioritize icmp traffic in their network.
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A final observation from the Ristenpart article is that they conclude that
Amazon EC2 does not do any live migration of nodes, meaning that the network
layout must be expected to be fixed during the lifetime of a launched instance.
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Figure 33: Network measurements between the 18 nodes in the system, depicted as
coloured heat maps overlayed with the distance matrix numbers for one test run.

7.2 Test Receipt

When a system is running in operating mode, crashes will not occur according
to a fixed schedule, so testing for whether a system is resistant to this and has
the sufficient availability qualities, is an obvious candidate for a mild degree of
random or fuzzy testing. In the receipt for testing described below, the last
phase, the crash phase, therefore has some randomness build in, as described in
the subsection below.

1. Setup phase:

(a) Launch all wind turbine nodes.

(b) Launch all wind farm server nodes.

(c) Launch all clients

2. Normal phase:

(a) Run for X minutes.

(b) Collect data from clients.
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3. Crash phase:

(a) Run for X minutes, where wind farm server nodes crashes randomly.

(b) Collect data from clients.

7.2.1 Algorithm for Random Crashes

The overall idea for the random crashes in the crash phase is to let one or more
servers crash at random times. This is accomplished by running in “periods”
where at the end of a period the following two decisions are made:

1. What wind farm servers must run in the next period.

2. How long is the next period. The upper and lower boundaries for the
period length will be decided during the initial test runs.

Both of these decisions should be made based on a standard random number
algorithm initialized with a fixed seed so the “random” crashes can be repeated.

To be certain that all test runs can actually be used to evaluate the system
QASes a couple of conditions must hold at all times though and thereby limit
the randomness a bit:

� At least 1 wind farm server must be running at any point during the test
run. If this was not the case this would be a violation of QAS2.

� All wind farm servers must crash at least every fifth period. This protects
against the unlikely event where one wind farm server would be running
for all periods.

A pseudo code algorithm for modelling the random crashes is given in algo-
rithm 1 on the following page:
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Algorithm 1 Pseudo code for random crashes of wind farm servers.

/**
* For each of the 3 farm servers the state in the next period is calculated and
* returned. The state will be either ”up” or ”down”.
* The calculated states will satisfy the constraints:
* 1) The state for each server will maximally be constant for 4
* calls to this method.
* 2) At least one of the server states will be ”up”.
* 3) A server will change state with 30% propability.
*/

ServerState[3] determineServerStatesInNextPeriod();

/**
* Launches all servers that has state ”up” in the serverStates arrays, if not
* already running.
* The method is synchronous and does not return until the servers are finished
* launching.
*/
void launchReappearingServers(ServerState[3] states);

/**
* Stops all servers that has state ”down” in the serverStates arrays, if not
* already stopped.
* The method is synchronous and does not return until the servers are finished
* stopping.
*/
void killCrashedServers(ServerState[3] states);

/**
* Return the length in milliseconds of the next period.
* This is a random number in the range [20000 ; 40000]
*/
long randomPeriodLength();

/**
* The actual algorithm for modelling random crashes.
* Run for 20 rounds of various lengths.
*/
for (int roundsCount = 20; roundsCount < 20; roundsCount++) {

ServerState[3] serverStates =
determineServerStatesInNextPeriod();

// synchronously call, wait til up
launchReappearingServers(serverStates);

// synchronously call, wait til down
killCrashedServers(serverStates);

sleep(randomPeriodLength());
}
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7.3 Measurement Method

7.3.1 Data to Collect from Clients

To be able to verify that the QASes hold each client must with 1 second intervals
record the “age” of the data for each sensor that it subscribes to. Where “age” is
defined as the number of seconds since the data was sent from the wind turbine
node.

The easiest way to record this is to let the wind turbine nodes attach a
timestamp to each sent value, and use a local NTP server to synchronize the
clock of the nodes.

7.3.2 Analyzing Data

The collected data series should be analyzed based on a plot of the maximum
data age as depicted in the simplified and stylized figure 34. For normal periods
with no crashes the data age should fluctuate around 1 second to fulfill QAS3.
At crash times the data will grow older as seen from t = 7 to t = 11 on the
figure, indicating a server crash at t = 7 and a reconnect to another server
between t = 11 and t = 12. At these crash times the data age must not exceed
5 seconds to fulfill QAS1.
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Figure 34: Stylized example plot of maximum data age on a client.

The actual data series measured will show longer periods of data and will
therefore be depicted as connected lines instead of individual points. Further-
more it will show the data for all 5 client nodes in the same diagram, as well
as the crash and restart times of the 3 farm server nodes. A commented actual
measurement is shown in figure 35 on the following page.
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The 3 blue lines at the bottom 
each represent the periods 
where each of the 3 farm 
server nodes are up. 

The graph colours for each of 
the 5 client nodes.
For each client both max age 
(solid lines) and mean age 
(dotted lines) are shown.

Example: 
● Server 1 is down.
● Server 2 starts.
● Server 3 crashes.

Figure 35: Commented plot with actual measured maximum and average data age for
5 clients and running periods for the 3 farm servers.

7.4 Alternative Measurement Method - Qualitative Net-
work Packet Analysis

At the offset of the thesis it was considered to do a detailed qualitative network
packet analysis of the different solutions as a supplement to the quantitative hard
measurements on the observed timings as described in the previous chapter. As
the quantitative measurements seems to be a good way to verify whether the
QASes was fulfilled, the detailed packet analysis was dismissed. Initially the
analysis was performed for the original system using pure RMI communication
though. For the interested reader, this analysis is found in appendix F.

8 Evaluating the Prototypes

To evaluate the 3 prototypes, each one was first developed and sporadically
tested locally on the development PC. After this removed the visible problems,
the test bench was used for further testing and remote debugging. As the debug-
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ging on a system with 18 nodes, where 3 of them (the farm servers) randomly
crashes, is not really suited for visual debugging in a tool like Eclipse, this was
mainly done by observing log files as they were written on the nodes.

To get reasonable evidence that each prototype actually fulfills the QASes,
each of the successful prototypes (the Hazelcast and the end-to-end based proto-
types) was scheduled for 100 test runs with 20 periods in each run. This means
that each of the prototypes was tested over a time period that came close to 24
hours. These two sequences of 100 test runs was both primed with the same seed
in the random number generator used in the randomization of period lengths
and crashes described in algorithm 1 on page 71. This means that the crash
sequences are repeatable and are the same for the two tests, so there should not
be any of them having a “lucky” or “easy” sequence of crashes. Furthermore the
network layout was the same during the test runs as the same set of Amazon
EC2 nodes was used.
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(a) End-to-end.
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(b) Hazelcast.

Figure 36: Test run 1 for the end-to-end based prototype
and the Hazelcast based prototype.

Figure 36 shows test run number 1 for the end-to-end and the Hazelcast
based prototypes, where it should be easily visible from the 3 blue server uptime
lines at the bottom of the graphs that the crash sequence and period lengths are
identical. The observant reader will notice slightly longer period lengths for the
Hazelcast test run though, which is due to the fact that the Hazelcast prototype
is a little slower in starting and stopping the crashing farm server nodes, and as
this is added to the period lengths this leads to this small mis-alignment. This
is not believed to be of any significance in the tests though.
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In all truthfulness it should be pointed out, that neither the selection of
exactly 100 test runs, the 24 hour test period, or any other of the comments
in the above sections are based on a theoretical statistical foundation. So the
reader should not go away believing that the results are based on proof by
statistical evidence, as a professional statistician could probably find problems
with the method used.

Besides the recording of the formalized test sequences a visual inspection of
the network load on the 3 types of nodes was performed during one test run for
each prototype. This was done using the Linux ifstat command line tool, using
the exact command ifstat -n -t -b which reports the network load in Kbits/sec
every second.

In the sub chapters below follows detailed comments to the results for each
of the 3 prototypes.

8.1 The Terracotta Based Prototype

Running the passive redundancy DSM-based Terracotta prototype described in
chapter 6.2 on the test bench, was quite disappointing. Actually it was so bad
that the prototype was not even able to fulfill the basic 1 second deadline in
QAS 3 when all servers was running and no crashes occurred at all. Figure 37
shows the measurements for two of these test runs, where it can be seen that
all 3 farm server nodes are running throughout the entire test.
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Figure 37: Two measurements for the Terracotta based prototype.

Two potential reasons that might explain the patterns seen on figure 37
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could be:

� Delayed flushing of data in the DSM. This would explain the reoccurring
spikes if data written locally to the DSM is only flushed to the other nodes
once every 30th second, which seems to be the interval on graph 37(a).
But this observation is not consistent with the pattern seen in the second
run depicted on graph 37(b).

� Mismatch between the passive solutions used in the internal versus the
external group. The Terracotta based prototype uses a global active farm
server node in the internal group, which might lead to problems since the
clients in the external group randomly selects different farm server nodes
as their local active farm server node. Therefore some of the client nodes
might be using one of the passive farm server nodes, which will lead to
significant delays if the Terracotta implementation is done in a way where
all reads hits the active farm server node.

It should be said that when the prototype ran with one instance of all 3 nodes on
the development PC the observed values was well below the 1 second deadline.
This fact made it somewhat harder to debug on, as the programming logic in
the prototype seemed to work fine in the small scale.

Although several debugging sessions were performed, and different attempts
to tune the Terracotta settings was done, none of these brought any significant
changes in a positive direction. As a last resort the prototype was even changed
to use the explicit Terracotta Toolkit API ([Terracotta, 2011, ch.7]), and still
with no progress.

With respect to the measured network load during the test runs as reported
by ifstat, this is shown in table 5. When comparing these numbers with the
observed loads for the two other prototypes, it is noted that for the farm server
and turbine node the numbers are more than a factor 10 larger for the Terra-
cotta prototype, and shows extreme fluctuations as seen from the large peak
numbers. For the client node the Terracotta numbers are close to half the num-
bers observed for the two other prototypes, which can simply be explained by
the fact that almost no data gets through to the client nodes.

Node Type Kbps/sec in Kbps/sec out

Farm server 6000 (peak at 40000) 10000 (peak at 75000)
Turbine node 150 (peak at 300) 600 (peak at 9000)
Client 120 12

Table 5: Network load per node type for the Terracotta based prototype

So the conclusion with respect to the Terracotta based prototype, is that it
was a complete failure, as it did not fulfill any of the three QASes. Therefore no
extensive testing with 100 test runs was performed for this prototype. Further-
more it was seen that a very large overhead of network traffic was generated by
the Terracotta servers.

8.2 The Hazelcast Based Prototype

The Hazelcast based prototype at first seemed to be successful on delivering on
all 3 QASes during the development and the initial individual test runs on the
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test bench. But as it can be seen on figure 38 the test over 100 test runs showed
that the reality was not as bright. The figures are a summary of all 100 tests
in one graph, showing the maximum observed client data age for each of the
100 test runs as the solid line, and the mean value over the max values as the
dashed line.
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Figure 38: Aggregated max and mean of the max values
for all 100 test runs for the Hazelcast based prototype.

The two figures shows that only 20% of the test runs was successful in that
the maximum observed value for the test run was below the 5 seconds deadline
of QAS1. For the remaining 80% of the tests there were at least one failover
situation per test that failed in fulfilling QAS1.

Zooming in on the individual test runs to find an explanation for these
aggregated numbers shows that the successful tests were all similar to the graph
previously depicted in figure 36(b) on page 74. For the failing test runs there
were two typical kinds of errors visible, depicted in figure 39(a) and (b). The
(b) graph showing test run number 65 shows a situation where the 5 second
failover deadline is slightly exceeded at some of the farm server crashes. This is
definitely a fail with respect to QAS1, but not at all comparable to the way the
Terracotta based prototype failed.

The second observed type of failure is shown on (a) showing test run number
5 where the prototype almost breaks down at the beginning of the test. In the
most extreme of these failures the data age reaches almost 110 seconds before
falling back to 1 second. This type of failure was only observed at the beginning
of the test runs.
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Figure 39: Two measurements for the Hazelcast based prototype.

A more detailed analysis of this second type of failure is given in the full test
report for the Hazelcast based prototype in appendix G, which is found in the
separate document master2011-MA-appendix-G.pdf. The conclusion from that
analysis is that there seems to be test runs where 2-3 of the 10 turbine nodes
fails in joining the Hazelcast group at the startup of the tests. This is based on
the fact that the detailed analysis show that most sensor values do get through
to the clients.

The network load during the test runs is shown in table 6. From these
numbers it is clear that the network traffic is significantly smaller than the load
reported for the Terracotta prototype. In general the numbers are similar to
the traffic measured for the end-to-end prototype, except for the farm server out
measurement which is is approximately 25% larger for the Hazelcast prototype,
and the turbine node in measurement which is a factor 7 larger for the Hazelcast
prototype.

Node Type Kbps/sec in Kbps/sec out

Farm server 570 1600
Turbine node 41 47
Client 245 24

Table 6: Network load per node type for the Hazelcast based prototype

During the test run the management console running on the local workstation
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crashed after test run number 17. Therefore the test was restarted at that
point for the remaining 83 tests. When the test runs was later analysed it was
noticed that this restart poses a statistical problem as the seed for the restarted
sequence was also reset, wherefore test number 1 and test number 18 is actually
a test of the same crash sequence (and so on up until test number 17 and 34).
Seen from a straight statistical view the Hazelcast test should be rerun to be
completely comparable to the end-to-end test run. But from a pragmatic view
it is not assumed that this would lead to any change in the conclusion about
the performance of the Hazelcast prototype.

So summarizing, there are at least two problems with the Hazelcast proto-
type that stops it from fulfilling the QASes:

1. Occasionally smaller exceedings of the 5 second deadline. This problem
might be hard to solve, as it is not expected to be a direct bug in the
source code, but more a performance problem with the Hazelcast multicast
algorithm.

2. Problems at startup for some tests, leading to significantly exceeding the
5 second deadline for a prolonged period. This problem is probably at-
tributable to a bug in the source code. With some effort it is assumed
that it would be possible to find and fix this.

8.3 The End-to-End Based Prototype
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Figure 40: Test run 27 for the end-to-end prototype.

The test runs for the end-to-end based prototype, showed that the prototype
was successful in fulfilling all 3 QASes. With respect to the 5 second deadline
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at failover time, all tests except test run number 27 shown in figure 40 was well
below this. For this single test the deadline was exceeded with 15 ms, meaning
that on one client a maximum data age of 5.015 seconds was seen. Since this
is a very small surpassing of the limit, and since this is the only occurrence out
of approximately 2500 failovers during the 100 runs, it is simple not sufficient
reason for dismissing the prototype.

As for the 1 second soft deadline during normal operation this is also in
overall respected by the prototype. There are small glitches here and there, but
none that exceeds the limit in a problematic way.

The overall success of the end-to-end based prototype is seen in figure 41.
The figure depicts the maximum observed client data age for each of the 100
test runs as the solid line, and the mean value over the max values as the dashed
line. It is clearly seen that test run number 27 is a single outlier, and that for
all other tests the maximum age is in the range 3.5 to 4.0 seconds. Furthermore
the mean values are slightly below the 1 second deadline.
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Figure 41: Aggregated max and mean of the max values
for all 100 test runs for the end-to-end prototype.

The network load during the test runs is shown in table 7. Comparing
these numbers to the two other prototypes it is clear that the network traffic is
significantly smaller than the load reported for the Terracotta prototype, and
slightly smaller than the Hazelcast load for the farm server out and turbine node
in measurements.

The full test report showing the detailed graphs for all 100 tests runs for
the end-to-end prototype can be found in appendix H, which is found in the
separate document master2011-MA-appendix-H.pdf.



9 CONCLUSION 81

Node Type Kbps/sec in Kbps/sec out

Farm server 590 1250
Turbine node 6 48
Client 245 24

Table 7: Network load per node type for the end-to-end prototype

9 Conclusion

This thesis has described how the theory on availability can be applied to a
specific distributed wind farm SCADA system. Based on this 3 architectural
prototypes were build, and the performance of these with respect to the archi-
tectural QASes from chapter 2.5.2 was evaluated using a well defined test bench
build using virtual machines running on Amazon EC2.

The first prototype was a passive redundancy solution using DSM, and was
build using the software product [Terracotta]. The evaluation of this prototype
showed that it failed severely with respect to even basic performance when the
system was running in normal mode. Furthermore a significant overhead in net-
work traffic, when compared to the two other prototypes, was observed. Finally
the techniques used in this prototype required significant changes in the origi-
nal system as the communication patterns was changed from explicit network
communication to hidden communication using the DSM. So concluding, this
solution failed severely, and although it might be possible to get the prototype
to deliver on the QASes by turning the correct knobs in the Terracotta software,
it does not feel like a natural fit to solve the problem using DSM.

The second prototype was an active redundancy solution using network mul-
ticast communication build using the software product [Hazelcast]. After the
first informal tests it seemed that this prototype solved the QASes fine. Further-
more the network traffic measured for this prototype showed significantly less
traffic than the Terracotta based prototypes, and it was also easier to build into
the existing system. A formal long-running test on the test bench uncovered
some severe problems with the prototype at the failover situations. This result
showed the strengths of building a well defined test bench to evaluate solutions,
even though it is of course harder to build a test bench for a non-deterministic
distributed system with many nodes. Although the Hazelcast based prototype
failed in fulfilling the QASes, it is believed that the problems should be solvable,
and the well defined test bench makes it easy to verify whether a proposed fix
actually solves the problems.

The third prototype used the so called end-to-end principle with only re-
computable state (also known as “soft state”) on the critical central wind farm
server nodes. This made it possible to build a prototype without using neither
the passive nor the active redundancy tactic, and still fulfill the QASes. Running
this prototype on the test bench verified that this third prototype outperformed
the two other prototypes and clearly fulfilled the QASes. With respect to the
observed network traffic this prototype was observed to be slightly more effi-
cient than the Hazelcast based prototype. The prototype has one significant
drawback though, as it is more complex in the communication concepts and
implementation than the two other prototypes, making it harder to evolve over
time in a safe way.
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An important byproduct of the main work in this thesis, is the well defined
test bench using a virtualized environment. This should with only minor mod-
ifications be usable for evaluating similar distributed problems in the future.
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Appendices

A Table of Contents of the Source Archive

Together with this thesis a zip archive containing source code for the proto-
types, appendix G and H and other artifacts is delivered. The archive is named
master2011-MA-source.zip. The contents of the archive is enumerated below.

A.1 Source Code for the Prototypes

The source code for the prototypes and the test bench tools are included in the
source folder. It should be noticed that some large 3. party dependencies are
not included in the archive. These should be either manually downloaded as
described in the source/readme.txt file, or automatically downloaded by using
the shell file source/setup.sh.

The sub folders in the source folder are listed below:

model: This folder contains source code and build files for the original model
system with no availability functionality as described in chapter 2.

terracotta: The source code and build files for the Terracotta based prototype
described in chapter 6.2 is present in this folder.

hazelcast: The source code and build files for the Hazelcast based prototype
described in chapter 6.3 is present in this folder.

end2end: The source code and build files for the end-to-end based prototype
described in chapter 6.4 is present in this folder.

aws: This folder contains shell script files automating the task of preparing
and creating an Amazon EC2 image that can be used as node in the test
bench. The content of this folder is described in details in appendix E.

ec2-mgmt: This folder contains the source code for the EC2 Java based con-
troller applications used for running the tests. This is described in details
in appendix D.

A.2 Results of the Test Runs

During the test runs for the prototypes, the age of the sensor readings observed
at the client nodes was emitted to plain text csv-files. These files are included
in the archive in the test-runs folder.

The analysis of these data for the Hazelcast and the end-to-end based proto-
types are included as the two appendices G and H, placed as pdf files in the root
of the archive. The highlights from these analyses has already been described
in chapter 8.

A.3 Other Artifacts

Appendix F describes a disassembly of the RMI communication taking place
between the nodes in the model system. The raw network capture files for this
analysis is found in the rmi-analysis folder in the archive.
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B Building and Running the Software

This appendix contains a recipe for setting up, building and running the tests.
It is not pinned out in extreme details and requires some familiarity with build
files, Java and Amazon EC2.

B.1 Prerequisites

The prototypes and tests was build and controlled from a Ubuntu 10.04 desktop
with the software below installed.

� Java 1.6.

� [Gradle] build tool20.

� [GNU R] statistical library for creating the graphs.

� Bash shell for running the scripts described in appendix E.

The Java parts of the prototypes should of course be usable on all platforms
supported by Java, but the helper scripts, as well as the R scripts launched from
the ec2-mgmt-console program might require small changes if they should run
on e.g. Windows (cygwin will of course help).

B.2 Download 3. Party Libraries

Three of the source projects (aws, hazelcast and terracotta) does not contain all
of the required artifacts, as the 3. party libraries used by these are rather big.

These dependencies should therefore be either manually downloaded and
extracted as described in the source/readme.txt file, or automatically downloaded
and extracted by using the shell file source/setup.sh.

B.3 Setup an Amazon EC2 Account

To be able to run the compiled prototypes on the Amazon EC2 test bench it is
necessary to create an Amazon EC2 account. At the time of writing Amazon
offers free usage for a year of so called micro instances at https://aws.amazon.
com/free/.

It is of course possible to build and run the prototypes in small locally
without an Amazon EC2 account.

As a part of creating the account it is necessary to setup several types of
access credentials used by different parts of the Amazon infrastructure. This
is done in the security credentials part of the account management at https:

//aws.amazon.com/account/. It might be preferable to read appendix D and
E first to get an understanding of what these security credentials are used for.

The Amazon access key id and secret part should be entered into the two
files:

� ec2-mgmt/ec2-controller/src/main/java/dk/accel/misw/mp/ec2/ctrl/impl/
AwsCredentials.properties

20Gradle was selected instead of the more mainstream Ant or Maven build tools, mainly
because these prototypes was a good isolated project to get some experience with a new build
tool.

https://aws.amazon.com/free/
https://aws.amazon.com/free/
https://aws.amazon.com/account/
https://aws.amazon.com/account/
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� ec2-mgmt/ec2-mgmt-console/src/main/java/dk/accel/misw/mp/ec2/
AwsCredentials.properties

A X.509 certificate will also need to be created. The public and private parts of
the certificate should be stored in the aws/certs folder and be referenced from
the aws/ec2-env file.

Finally a Amazon EC2 key pair for ssh access must be created. The name
of this must be inserted into both the aws/ec2-env file and the two AwsCre-
dentials.properties listed above. The private key for this should preferable be
downloaded into the aws/ssh folder. It could of course also be put into the nor-
mal private ˜/.ssh folder, but the scripts in the aws folder have been configured
to avoid interfering with the normal .ssh keys and known hosts file.

Finally the Amazon EC2 user id (without dashes) should be entered into the
two AwsCredentials.properties listed above.

B.4 Create an Amazon EC2 Ubuntu 10.04 Image

This step is described in appendix E, but before doing this it is necessary to
build the ec2-controller application that will be uploaded to the Amazon image.
This is done by running the Gradle command below in the source/ec2-mgmt
folder:

gradle assemble

B.5 Building Using Gradle

For building the individual prototypes the following Gradle commands can be
used in each of the source/<prototype> folders:

gradle assemble: Builds and assembles all three components for a prototype.

gradle clean: Cleans all components for a prototype.

gradle eclipse: Creates eclipse project files for a prototype. Note that each
of the prototypes contains components with the same names (e.g. client,
server, etc.), so a separate Eclipse workspace must be used for each pro-
totype.

gradle cleanEclipse: Removes the eclipse project files.

To speedup Gradle it is beneficial to use the −−daemon option to launch the
Gradle daemon process. The full syntax is then like:

gradle −−daemon assemble

B.6 Eclipse Launch Files

The individual prototypes as well as the test bench program contains a list of
Eclipse launch files in the etc folder of each component. These should automat-
ically appear in the run -> run configurations menu in Eclipse when a project
has been imported.

These should be relatively self describing given access to the source code.
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C Manual for Reading the Source Code

All three prototypes as well as the original model system has the same source
code layout. Each contains the following four modules:

common: Contains some shared utility classes.

client: Contains the source code for the clients.

node: Contains the source code for the wind turbine service.

server: Contains the source code for the wind farm service.

In the sections below the components from the C & C diagram for the wind
turbine service and the wind farm service are mapped to source code classes.
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Figure 42: Component and connector diagram
(previously shown in figure 5 on page 14).

C.1 Wind Turbine Service Source Code

The four main components from the C & C view for the turbine service maps
to the source code as follows:

Subscription Service: Is implemented by the dk.accel.misw.mp.model.node.
impl.NodeSubscriptionServiceImpl class.

Publish Service: Is also implemented in the dk.accel.misw.mp.model.node.impl
.NodeSubscriptionServiceImpl class, by the inner class TurbineSubscription.

Sensor Reader: Is implemented by the dk.accel.misw.mp.model.node.mock.SensorMock
class.

Broadcast Client: Is implemented by the dk.accel.misw.mp.model.node.impl.
BroadcastClientImpl class.
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C.2 Wind Farm Service Source Code

The six main components from the C & C view for the wind farm service maps
to the source code as follows:

Client Subscription Service: Is specified by the dk.accel.misw.mp.model.server
.client.ClientSubscriptionSvc interface and implemented by the dk.accel.
misw.mp.model.server.impl.ClientSubscriptionSvcImpl class.

Client Publish Service: Is specified by the dk.accel.misw.mp.model.server.client
.ClientPublishSvc interface and implemented by the dk.accel.misw.mp.model
.server.impl.ClientPublishSvcImpl class.

Subscription Multiplexer: Is implemented by the dk.accel.misw.mp.model.
server.impl.SubscriptionMultiplexerImpl class and some of the other classes
in the dk.accel.misw.mp.model.server.impl package.

Turbine Subscription Service: Is implemented by the dk.accel.misw.mp.model
.server.impl.TurbineSubscriptionSvc class.

Turbine Observer Service: Is implemented by the dk.accel.misw.mp.model.
server.impl.TurbineObserverSvcImpl class.

Broadcast Server: Is implemented by the dk.accel.misw.mp.model.server.impl
.BroadcastServer class.

D Java Program for Automating the Test Runs

The source archive for this thesis contains the java programs for automating the
test runs on Amazon EC2 in the source/ec2-mgmt folder. This folder contains
two modules:

ec2-mgmt-console: This module contains the source code for the management
console running at the developers local host. This is basically a command
line tool accepting one of five commands { start, stop, probenet, runtests,
fulltests } for controlling the EC2 nodes and the software running on them.
The five commands are individually described below in section D.1.

ec2-controller: This module contains the source code for the controller appli-
cation running on the remote EC2 nodes. This basically just exposes a
simple webservice API with the five operations described in section D.2.
This component is packaged on the EC2 image as described in appendix E,
and is set to auto start when an EC2 instance is launched. The webservice
API it exposes makes it possible to upload new target application images,
and start and stop the target applications remotely using the management
console.

The overall runtime interoperation of these components is shown in figure 43 on
the next page.
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Figure 43: Sequence diagram showing how the management console instantiates EC2
nodes and controls the target applications using the controller application running on

the EC2 node.

D.1 Management Console Commands

The management console application dk.accel.misw.mp.ec2.Main accepts the fol-
lowing 5 commands, for which Eclipse launch files are included in the project in
the ec2-mgmt-console/etc folder:

start: This command launches 18 EC2 nodes using the Amazon EC2 API, and
writes the IP-addresses of these to a hidden .instances.bin file.

stop: This command reads the node addresses from the .instances.bin file and
stops the nodes it finds therein.

probenet: This command reads the node addresses from the .instances.bin file
and sends a webservice call to each of them to probe the network with
respect to round-trip times and number of network hops to the 17 other
nodes. Each node returns a list of the results for this, and the management
console uses a small [GNU R] script to generate graphs for the network
measurements in the format seen on figure 33 on page 69. The R scripts
are present in the ec2-mgmt-console/etc/r-scripts folder.

runtests: This command starts by uploading images for the 3 different target
application types, farm servers, turbine nodes and clients for one proto-
type to the EC2 nodes by using the controller application init() method.
Thereafter the test algorithm described in algorithm 1 on page 71 is initi-
ated. Finally the logs and measurement data are retrieved from the EC2
nodes and another small R script generates graphs for the sensor data age
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for the 5 clients in the format seen on figure 35 on page 73. The command
requires the -Dtest-project environment option to be set and point to the
folders containing a compiled version of the prototype to test.

fulltests: This command is similar to the runtests command, but performs 100
repetitions of the test runs.

D.2 Controller Application Webservice Operations

The controller application exposes the following 5 webservice operations:

/**
* Download the java program from Amazon S3.
*/
void init(String s3key, Environment env);

/**
* Probe the network to the hosts in the ipAddresses parameter.
*/

NodeNetworkInfoList probeNetwork(List<String> ipAddresses);

/**
* Start the downloaded java program.
*/
void start();

/**
* Stop the download java program.
*/
void stop();

/**
* Zip the log folder and upload it to S3.
*

* @return the s3key for the data.
*/

String uploadData(String s3prefix);

E Scripts for Automating the Test Bench Setup

The source archive for this thesis contains a set of bash scripts automating
the setup of an Ubuntu 10.04 based Amazon EC2 image that can be used for
launching the 18 nodes in the test bench setup. These scripts are found in the
source/aws folder. The main files in this folder are listed below.

Before running these scripts the ec2-controller application must have been
configured with EC2 credentials in the ec2-controller/src/main/java/dk/accel/
misw/mp/ec2/ctrl/impl/AwsCredentials.properties file, and must have been com-
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piled and packaged by running the Gradle command below in the source/ec2-
mgmt folder:

gradle assemble

The files and folders in the source/aws folder are:

ec2-env.template: This file is a template for the file storing the EC2 user
account credentials. A copy of this file should be created and named
ec2-env, where after the EC2 certificate and SSH keypair name should be
specified in the file.

ec2-image-create.sh: The main script file that creates the EC2 image. The
steps it performs are:

1. Launches a plain EC2 Ubuntu 10.04 image.

2. Installs a Java VM in it.

3. Uploads the ec2-controller application to it, and configures it for auto-
starting when the node starts.

4. Perform other minor system maintenance tasks on the system, such
as set up firewall, update packages and install some used system tools
(such as hping3, zip, unzip, ifstat, sysstat).

5. Create a new private EC2 image based on the modified image, which
can now be launched in 18 instances for the tests.

remote/setup.sh: A script that is uploaded by the ec2-image-create.sh script
to the running EC2 image, and executed remotely using plain SSH with
the command:

ssh −t −F ./ssh/config ${HOST} sudo bash ./setup.sh

This script performs the parts of the ec2-image-create.sh that is to be
executed on the remote node (i.e. step 2, 3 and 4 in the above list).

scripts-folder: This folder contains some helper functions used by the ec2-
image-create.sh script.

F Qualitative Analysis - RMI Packet Analysis

Early in the thesis work it was considered to do a detailed network packet
analysis as a supplement to the quantitative timing measurements.

The idea behind such an analysis was that the number of network pack-
ets involved in the communication between the farm server and a turbine node
would be a good indication of how much overhead the different prototypes would
introduce when solving the availability problem in different ways. In the follow-
ing sections the analysis that was done at the outset of the thesis work, on the
original baseline system, is described.
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F.1 Hypothesis on Packet Numbers and Sizes

For the baseline system with its pure RMI solution it would be expected that the
number of network packets will follow the trivial linear mathematical function:
y = Mx + Rc, where x is the number of RMI calls, M is the network packet
count per RMI call, and Rc is fixed overhead related to RMI housekeeping, e.g.
for distributed garbage collection. Furthermore the size of the individual packets
should also be measured. This is expected to be a function related to the number
of sensors that are subscribed: Z = R1s+R2, where s is the number of sensors
that at least one client subscribes to, R1 is the RMI marshalling overhead per
sensor, and R2 is the RMI marshalling overhead per RMI call - generally it would
be expected that R1 is small compared to R2. Finally it should be noted that
because of the multiplexing in the wind farm service the number of subscribing
clients is not expected to be a factor in any of these functions.

F.2 Measured Packet Numbers and Sizes

The number of network packets and the size of these was found through a
combination of raw network analysis between the farm server and a turbine
node, and by enabling the RMI transport level debug logging as described in
[RMI Logging]. Based on this the actual flow of network packets was found to
be as shown in figure 44 on the following page.



F QUALITATIVE ANALYSIS - RMI PACKET ANALYSIS 92

UpdateSensorValues

C → S

UpdateSubscription

S → C

:Wind Farm 

Server
:Turbine Node

RMI Ping (0x52)

RMI PingAck (0x53)

TCP Ack (empty)

RMI Call (0x50 – RMI call payload)

RMI ReturnData (0x51 – RMI response payload)

TCP Ack (empty)

RMI Ping (0x52)

RMI PingAck (0x53)

TCP Ack (empty)

RMI Call (0x50 – RMI call payload)

RMI ReturnData (0x51 – RMI response payload)

TCP Ack (empty)

Figure 44: Network packet flow for RMI method calls.

The packet payload were analysed based on the information specified in
[RMI Specification, ch.10.2]. Before the packet flow shown in the figure there
are of course the UDP discovery packets, as well as some initial RMI packets.
The initial RMI packets includes some JNDI lookup packets, as well as packets
that initializes the RMI protocol to using the so called stream protocol (RMI
message type 0x4b21). Basically this is the standard protocol used when a
TCP stream connection can be established between a RMI client and server.
Two other protocol exists SingleOpProtocol (type 0x4c) for usage when RMI
is embedded in HTTP messages, and MultiplexProtocol (type 0x4d) for usage
in some special scenarios (e.g. in applets). For further details on these different
protocol types and their characteristics, the [RMI Specification, ch.10.2 and

21The first byte of a RMI message specifies the RMI message type.
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ch.10.6] should be consulted.
From the figure it can be seen that for each RMI call, several TCP packets

are exchanged. Before any call a Ping-message22 (type 0x52), and a PingAck
(type 0x53) are exchanged, followed by an empty TCP ack message. Only after
this, the actual call is marshaled and send in a Call -message (type 0x50), replied
to by a a ReturnData-message (type 0x51), followed by a standard empty TCP
ack message.

Scrutinizing the headers of the exchanged TCP packets it can be seen that
the so called TCP Push bit is set on all packets except the empty TCP ack
messages. The ack messages could therefore in theory be piggybacked on other
packets send between the relevant ports, but in the observed system this did
not seem to be the case at any time. So using the postulated relation for the
packet count y = Mx + Rc, M was measured to (4 + 2) packets per RMI call,
i.e. 4 individual packets, and 2 that in theory could be piggybacked. With
respect to measuring Rc only a small number of messages related to ongoing
RMI housekeeping was seen. As expected they seem to be related to the dis-
tributed garbage collection algorithm. An algorithm which is a simple reference
counting GC algorithm based upon taking leases (see [Grosso, 2002, ch.16] for
extensive in depth treatment of the actual working of this lease mechanism
in Sun’s standard RMI implementation). The number of these messages were
insignificant compared to the traffic actively generated by the application. Ba-
sically there is just one RMI call (consisting of the usual (4 + 2) TCP packets)
to the java.rmi.dgc.DGC.dirty(..) method before the client first issues a call to
an RMI object, and according to the documentation the default lease period is
10 minutes23.

Previously in chapter 2.2.1 on page 14 it was described how the broadcast
client on all turbine nodes periodically calls the farm server to detect if it be-
comes unavailable, so that the turbine node can enter reconnect mode if it
happens. This call takes place once every second. As this is the same interval
as the sensor value callbacks happens with, this effectively doubles the packet
count Y related to RMI messages initiated from the turbine nodes to the farm
server. But since the same one second interval is used for the two types of mes-
sages, it would be obvious to attempt to optimize on this, e.g. by disabling the
broadcast client keep alive messages whenever at least one sensor is subscribed
to at the turbine node. In reality there does not seem to be any bottleneck at
this point though.

With respect to the packet sizes, this depends heavily on the actual data
structures passed by value in the different RMI calls. The actual measured
sizes for the different message types with 1 client making a subscription for
respectively 1, 10 and 100 different sensors on the same turbine can be seen in
table 8.

As expected the size of the broadcast client keep alive messages (labelled
isRegistered), as well as the RMI garbage collection lease messages are indepen-
dent of the number of subscribed sensors. Using the postulated relation for the
packet sizes Z = R1s + R2, the constants R1 and R2 can with trivial isolation
of s using the measured values for Z for the request messages be calculated as

22Not to be confused with the standard network ICMP ping. The ping-message described
here is a standard TCP packet, but the message type is called Ping in RMI terms.

23The lease period can be adjusted with the system property ’java.rmi.dgc.leaseValue’



F QUALITATIVE ANALYSIS - RMI PACKET ANALYSIS 94

# Sensors / RMI Call 1 sensor 10 sensors 100 sensors

updateSubscription Req: 816 B Req: 1131 B Req: 4371 B
(S � C) Resp: 22 B Resp: 22 B Resp: 22 B

updateSensorValues Req: 528 B Req: 969 B Req: 5469 B
(C � S) Resp: 22 B Resp: 22 B Resp: 22 B

isRegistered Req: 467 B Req: 467 B Req: 467 B
(C � S) Resp: 23 B Resp: 23 B Resp: 23 B

DGC.dirty Req: 451 B Req: 451 B Req: 451 B
Resp: 287 B Resp: 287 B Resp: 287 B

Table 8: Size in bytes of TCP payload for RMI messages in the baseline system.
C - > S: Request goes from wind turbine node to wind farm server.
S -> C: Request goes from wind farm server to wind turbine node.

shown in table 924

RMI Call R1 R2

UpdateSubscription 36 B 781 B
UpdateSensorValues 50 B 479 B

Table 9: Size in bytes for R1 and R2 in the relation Z = R1s + R2

The differences in the values across the two different methods makes good
sense as it depends on the actual parameters the methods takes as input. A
verification of the serialized format of the relevant Java objects would without
doubt verify these numbers, but this is out of scope of this thesis, and such an
analysis should be pretty forward for any experienced Java developer, and al-
though some exciting information about the optimizations and patterns used in
the Java serialization mechanism could probably be learned by such an exercise,
no further exploration of this will be done here25.

Finally it was also verified whether the claim that the network traffic (in
packet count and/or packet sizes) between the farm server and the turbine nodes
was not influenced by the number of concurrent clients. This was found to be
correct only as long as the clients subscribes to the exact same sensors. In the
scenario where the clients sensor subscriptions are only partly overlapping sets,
additional UpdateSubscription calls takes place every time a client is either the
first to subscribe on a specific sensor, or the last to unsubscribe from a specific
sensor. But with respect to the notification messages from the turbine nodes to
the farm server the claim is correct in all scenarios as the multiplexing in the
farm server multiplies the single notification to all the subscribing clients.

The raw network capture files for the above analysis, are found in form of
pcap files in the source archive for this thesis in the rmi-analysis folder. One
tool that will make detailed analysis of the raw data possible is [Wireshark]. An
example of some of the essential information used in the analysis is depicted on

24The observant reader checking the calculations will find that the values of R1 are not
exact. Depending of which 2 of the 3 equations are used for isolating R1 the result will be
either 35 or 36 bytes for the UpdateSubscription call and 49 or 50 for the UpdateSensorValues
call.

25The interested reader can find in depth coverage of the Java serialization format in
[Halloway, 2002, ch.4].
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figure 45. It should be noted that manual analysis of the data is cumbersome
and time consuming. In the situation where the idea of doing detailed network
packet analysis for all the prototypes would have been pursued, some scripts
for automating the analysis tasks should probably have been developed, just as
they were for the timing measurements.

First byte is the RMI message 
type: 0x50 = a Call message.

The TCP push flag (PSH) is 
set.

This frame shows detailed 
information about the selected 
packet (no. 139)

Figure 45: Wireshark analysis of the network capture files.

G Test Report for the Hazelcast Based Proto-
type

This appendix shows detailed measurements for 100 test runs of the Hazelcast
based prototype and contains a detailed analysis of the problems that was found
in the prototype.

Due to the large size of this appendix with 100 graphs, it is found in a
separate document:

master2011-MA-appendix-G.pdf

H Test Report for the End-to-End Based Pro-
totype

This appendix shows detailed measurements for 100 test runs of the end-to-end
based prototype.
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Due to the large size of this appendix with 100 graphs, it is found in a
separate document:

master2011-MA-appendix-H.pdf
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