

Table of Contents

1 Getting Started
1.0.1 Using Product Documentation
1.0.2 Using a License File

1.0.2a Explicitly Specifying the Location of the License File
1.0.2b Verifying Products and Features

1.0.3 Using Apache Maven
1.0.3a Creating Enterprise Edition Clients
1.0.3b Using the tc-maven Plugin
1.0.3c Working With Terracotta SNAPSHOT Projects
1.0.3d Terracotta Repositories

2 Enterprise Ehcache With Terracotta Clustering
2.1 Enterprise Ehcache Installation

2.1.1 Step 1: Requirements
2.1.2 Step 2: Install the Distributed Cache
2.1.3 Step 3: Configure the Distributed Cache

2.1.3a Add Terracotta to Specific Caches
2.1.3b Edit Incompatible Configuration

2.1.4 Step 4: Start the Cluster
2.1.5 Step 5: Edit the Terracotta Configuration

2.1.5a Procedure:
2.1.6 Step 6: Learn More

2.2 Enterprise Ehcache API Guide
2.2.1 Enterprise Ehcache Search API For Clustered Caches

2.2.1a Sample Code
2.2.1b Stored Search Indexes
2.2.1c Troubleshooting Ehcache Search

2.2.2 Enterprise Ehcache Cluster Events
2.2.2a Cluster Topology
2.2.2b Cluster Events
2.2.2c Events API Example Code

2.2.3 Bulk-Load API
2.2.3a Bulk-Load API Example Code

2.2.4 Unlocked Reads for Consistent Caches (UnlockedReadsView)
2.2.4a UnlockedReadsView and Data Freshness

2.2.5 Explicit Locking
2.2.6 Configuration Using the Fluent Interface
2.2.7 Write-Behind Queue in Enterprise Ehcache

2.3 Enterprise Ehcache Configuration Reference
2.3.1 Ehcache Configuration File

2.3.1a Setting Cache Eviction
2.3.1b Cache-Configuration File Properties
2.3.1c Exporting Configuration from the Developer Console
2.3.1d Terracotta Clustering Configuration Elements
2.3.1e Controlling Cache Size
2.3.1f Cache Events Configuration
2.3.1g Incompatible Configuration

2.3.2 Offloading Large Caches
2.3.2a Tuning Concurrency

2.3.3 Non-Blocking Disconnected (Nonstop) Cache
2.3.3a Configuring Nonstop
2.3.3b Nonstop Timeouts and Behaviors

2.3.4 How Configuration Affects Element Eviction
2.3.4a DCV2, Strict Consistency, UnlockedReadsView, and Bulk Loading

2.3.5 Understanding Performance and Cache Consistency
2.3.6 Cache Events in a Terracotta Cluster

Terracotta Documentation Home

Terracotta 3.5.0 Documentation

Terracotta 3.5.0
Support
Services
Training
Contact

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

1 of 162 2011-06-03 11:26

2.3.6a Handling Cache Update Events With DCV2
2.3.7 Configuring Caches for High Availability

2.3.7a Using Rejoin to Automatically Reconnect Terracotta Clients
2.3.8 Working With Transactional Caches

2.3.8a Strict XA (Full JTA Support)
2.3.8b XA (Basic JTA Compliance)
2.3.8c Local Transactions
2.3.8d Avoiding XA Commit Failures With Atomic Methods
2.3.8e Implementing an Element Comparator

2.3.9 Working With OSGi
3 Enterprise Ehcache for Hibernate

3.1 Enterprise Ehcache for Hibernate Express Installation
3.1.1 Step 1: Requirements
3.1.2 Step 2: Install and Update the JAR files
3.1.3 Step 3: Prepare Your Application for Caching

3.1.3a Using @Cache
3.1.3b Using the <cache> Element
3.1.3c Using the <class-cache> Element

3.1.4 Step 4: Edit Configuration Files
3.1.4a Hibernate Configuration File
3.1.4b Enterprise Ehcache Configuration File

3.1.5 Step 5: Start Your Application with the Cache
3.1.6 Step 6: Edit the Terracotta Configuration

3.1.6a Procedure:
3.1.7 Step 7: Learn More

3.2 Testing and Tuning Enterprise Ehcache for Hibernate
3.2.1 Testing the Cache
3.2.2 Optimizing the Cache Size

3.2.2a Eviction Parameters
3.2.2b Reducing the Cache Miss Rate
3.2.2c Examinator Example

3.2.3 Optimizing for Read-Only Data
3.2.4 Reducing Unnecessary Database Connections

3.2.4a Lazy Fetching with Spring-Managed Transactions
3.2.4b Lazy Fetching for Non Spring Applications

3.2.5 Reducing Memory Usage with Batch Processing
3.2.6 Other Important Tuning Factors

3.2.6a Query Cache
3.2.6b Connection Pools
3.2.6c Local Key Cache
3.2.6d Hibernate CacheMode
3.2.6e Cache Concurrency Strategy
3.2.6f Terracotta Server Optimization
3.2.6g JDK Version
3.2.6h Statistics Gathering
3.2.6i Logging
3.2.6j Java Garbage Collection
3.2.6k Database Tuning
3.2.6l Unwanted Synchronization with Hibernate Direct Field Access
3.2.6m Hibernate Exception Thrown With Cascade Option
3.2.6n Cacheable Entities and Collections Not Cached

3.3 Enterprise Ehcache for Hibernate Reference
3.3.1 Cache Configuration File

3.3.1a Setting Cache Eviction
3.3.1b Cache-Configuration File Properties
3.3.1c Exporting Configuration from the Developer Console

3.3.2 Migrating From an Existing Second-Level Cache
3.3.3 Cache Concurrency Strategies

3.3.3a READ_ONLY
3.3.3b READ_WRITE
3.3.3c NONSTRICT_READ_WRITE
3.3.3d TRANSACTIONAL
3.3.3e How Entitymanagers Choose the Data Source

3.3.4 Setting Up Transactional Caches
3.3.5 Configuring Multiple Hibernate Applications
3.3.6 Finding Cacheable Entities and Collections
3.3.7 Cache Regions in the Object Browser
3.3.8 Hibernate Statistics Sampling Rate
3.3.9 Is a Cache Appropriate for Your Use Case?

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

2 of 162 2011-06-03 11:26

3.3.9a Frequent Updates of Database
3.3.9b Very Large Data Sets
3.3.9c Frequent Updates of In-Memory Data
3.3.9d Low Frequency of Cached Data Queries
3.3.9e Requirements of Critical Data
3.3.9f Database Modified by Other Applications

4 Quartz Scheduler
4.1 Clustering Quartz Scheduler

4.1.1 Step 1: Requirements
4.1.2 Step 2: Install Quartz Scheduler
4.1.3 Step 3: Configure Quartz Scheduler

4.1.3a Add Terracotta Configuration
4.1.3b Scheduler Instance Name

4.1.4 Step 4: Start the Cluster
4.1.5 Step 5: Edit the Terracotta Configuration

4.1.5a Procedure:
4.1.6 Step 6: Learn More

4.2 Quartz Scheduler Reference
4.2.1 Quartz Scheduler Where (Locality API)

4.2.1a Installing Quartz Scheduler Where
4.2.1b Configuring Quartz Scheduler Where
4.2.1c Understanding Generated Node IDs
4.2.1d Available Constraints
4.2.1e Quartz Scheduler Where Code Sample
4.2.1f Locality With the Standard Quartz Scheduler API

4.2.2 Execution of Jobs
4.2.3 Working With JobDataMaps

4.2.3a Updating a JobDataMap
4.2.3b Best Practices for Storing Objects in a JobDataMap

4.2.4 Cluster Data Safety
4.2.5 Effective Scaling Strategies

5 Clustering Web Applications with Terracotta Web Sessions
5.0.1 Architecture of a Terracotta Cluster

5.1 Web Sessions Installation
5.1.1 Step 1: Requirements
5.1.2 Step 2: Install the Terracotta Sessions JAR
5.1.3 Step 3: Configure Web-Session Clustering

5.1.3a Jetty, WebLogic, and WebSphere
5.1.3b JBoss AS and Tomcat

5.1.4 Step 4: Start the Cluster
5.1.5 Step 5: Edit the Terracotta Configuration

5.1.5a Procedure:
5.1.6 Step 6: Learn More

5.2 Web Sessions Reference
5.2.1 Additional Configuration Options

5.2.1a Session Locking
5.2.1b Synchronous Writes

5.2.2 Troubleshooting
5.2.2a Sessions Time Out Unexpectedly
5.2.2b Changes Not Replicated
5.2.2c Tomcat 5.5 Messages Appear With Tomcat 6 Installation
5.2.2d Deadlocks When Session Locking Is Enabled
5.2.2e Events Not Received on Node

6 The Terracotta Server Array
6.1 Working with Terracotta Configuration Files

6.1.1 How Terracotta Servers Get Configured
6.1.1a Default Configuration
6.1.1b Local XML File (Default)
6.1.1c Local or Remote Configuration File

6.1.2 How Terracotta Clients Get Configured
6.1.2a Local or Remote XML File
6.1.2b Terracotta Server

6.1.3 Configuration in a Development Environment
6.1.3a One-Server Setup in Development
6.1.3b Two-Server Setup in Development
6.1.3c Clients in Development

6.1.4 Configuration in a Production Environment
6.1.4a Clients in Production

6.1.5 Binding Ports to Interfaces

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

3 of 162 2011-06-03 11:26

6.1.6 terracotta.xml (DSO only)
6.1.7 Which Configuration?

6.2 Configuring Terracotta Clusters For High Availability
6.2.1 Common Causes of Failures in a Cluster
6.2.2 Basic High-Availability Configuration
6.2.3 High-Availability Features

6.2.3a HealthChecker
6.2.3b Automatic Server Instance Reconnect
6.2.3c Automatic Client Reconnect
6.2.3d Special Client Connection Properties

6.3 Terracotta Server Arrays
6.3.1 Definitions and Functional Characteristics
6.3.2 Server Array Configuration Tips
6.3.3 Backing Up Persisted Shared Data
6.3.4 Client Disconnection
6.3.5 Cluster Structure and Behavior

6.3.5a Terracotta Cluster in Development
6.3.5b Terracotta Cluster With Reliability
6.3.5c Terracotta Server Array with High Availability
6.3.5d Scaling the Terracotta Server Array

6.4 Improving Server Performance With BigMemory
6.4.1 How BigMemory Improves Performance
6.4.2 Requirements
6.4.3 Configuring BigMemory

6.4.3a Configuring Direct Memory Space
6.4.3b Configuring Off-Heap
6.4.3c Maximum, Minimum, and Default Values

6.4.4 Optimizing BigMemory
6.4.4a General Memory allocation
6.4.4b Compressed References
6.4.4c Swapiness and Huge Pages

6.5 Cluster Security
6.5.1 Configuring Security

6.5.1a How to Configure Security Using LDAP (via JAAS)
6.5.1b How to Configure Security Using JMX Authentication

6.5.2 Using Scripts Against a Server with Authentication
6.5.3 Extending Server Security

6.6 Changing Cluster Topology in a Live Cluster
6.6.1 Adding a New Server
6.6.2 Removing an Existing Server
6.6.3 Editing the Configuration of an Existing Server

7 Developing Applications With the Terracotta Toolkit
7.0.1 Installing the Terracotta Toolkit
7.0.2 Understanding Versions

7.1 Working With the Terracotta Toolkit
7.1.1 Initializing the Toolkit
7.1.2 Using Toolkit Tools

7.1.2a Toolkit Data Strucutres and Serialization
7.1.2b Maps
7.1.2c Queues
7.1.2d Cluster Information
7.1.2e Locks
7.1.2f Clustered Barriers
7.1.2g Utilities

7.2 Terracotta Toolkit Reference
7.2.1 Client Failures
7.2.2 Connection Issues
7.2.3 Multiple Terracotta Clients in a Single JVM

7.2.3a Multiple Clients With a Single Web Application
7.2.3b Clients Sharing a Node ID

8 Terracotta Cluster Tools
8.1 Terracotta Developer Console

8.1.1 Launching the Terracotta Developer Console
8.1.1a The Console Interface
8.1.1b Console Messages
8.1.1c Menus
8.1.1d Context-Sensitive Help
8.1.1e Context Menus

8.1.2 Working with Clusters

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

4 of 162 2011-06-03 11:26

8.1.2a Adding and Removing Clusters
8.1.2b Connecting to a cluster
8.1.2c Connecting to a Secured Cluster
8.1.2d Disconnecting from a Cluster

8.1.3 Enterprise Ehcache Applications
8.1.3a Overview Panel
8.1.3b Performance Panel
8.1.3c Statistics Panel
8.1.3d Editing Cache Configuration

8.1.4 Enterprise Ehcache for Hibernate Applications
8.1.4a Second-Level Cache View

8.1.5 Clustered Quartz Scheduler Applications
8.1.6 Clustered HTTP Sessions Applications
8.1.7 Working with Terracotta Server Arrays

8.1.7a Server Panel
8.1.7b Connecting and Disconnecting from a Server
8.1.7c Server Connection Status

8.1.8 Working with Clients
8.1.8a Client Panel
8.1.8b Connecting and Disconnecting Clients

8.1.9 Monitoring Clusters, Servers, and Clients
8.1.9a Real-Time Performance Monitoring
8.1.9b Logs and Status Messages
8.1.9c Operator Events

8.1.10 Advanced Monitoring and Diagnostics
8.1.10a Shared Objects
8.1.10b Lock Profiler

8.1.11 Recording and Viewing Statistics
8.1.11a Cluster Statistics Recorder
8.1.11b Snapshot Visualization Tool

8.1.12 Troubleshooting the Console
8.1.12a Cannot Connect to Cluster (Console Times Out)
8.1.12b Failure to Display Certain Metrics Hyperic (Sigar) Exception
8.1.12c Console Runs Very Slowly
8.1.12d Console Logs and Configuration File

8.1.13 Backing Up Shared Data
8.1.14 Update Checker
8.1.15 Definitions of Cluster Statistics

8.1.15a cache objects evict request
8.1.15b cache objects evicted
8.1.15c l1 l2 flush
8.1.15d l2 faults from disk
8.1.15e l2 l1 fault
8.1.15f memory (usage)
8.1.15g vm garbage collector
8.1.15h distributed gc (distributed garbage collection, or DGC)
8.1.15i l2 pending transactions
8.1.15j stage queue depth
8.1.15k server transaction sequencer stats
8.1.15l network activity
8.1.15m l2 changes per broadcast
8.1.15n message monitor
8.1.15o l2 broadcast count
8.1.15p l2 transaction count
8.1.15q l2 broadcast per transaction
8.1.15r system properties
8.1.15s thread dump
8.1.15t disk activity
8.1.15u cpu (usage)

8.2 Terracotta Tools Catalog
8.2.1 Terracotta Maven Plugin
8.2.2 TIM Management (tim-get)
8.2.3 Sessions Configurator (sessions-configurator)
8.2.4 Developer Console (dev-console)
8.2.5 Operations Center (ops-center)
8.2.6 Archive Utility (archive-tool)
8.2.7 Database Backup Utility (backup-data)

8.2.7a Using the Terracotta Operations Center
8.2.7b Example (UNIX/Linux)

8.2.8 Distributed Garbage Collector (run-dgc)

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

5 of 162 2011-06-03 11:26

8.2.8a Further Reading
8.2.9 Start and Stop Server Scripts (start-tc-server, stop-tc-server)

8.2.9a Further Reading
8.2.10 Version Utility (version)
8.2.11 Server Status (server-stat)

8.2.11a Example
8.2.12 Cluster Statistics Recorder (tc-stats)
8.2.13 DSO Tools

8.2.13a Sample Launcher (samples)
8.2.13b Make Boot Jar Utility (make-boot-jar)
8.2.13c Scan Boot Jar Utility (scan-boot-jar)
8.2.13d Boot Jar Path Utility (boot-jar-path)
8.2.13e DSO Environment Setter (dso-env)
8.2.13f Java Wrapper (dso-java)

9 Terracotta DSO Installation
9.0.1 Standard Versus DSO Installations
9.0.2 Overview of Installation

9.1 Performing a DSO Installation
9.1.1 Prerequisites

9.1.1a Enterprise Ehcache Users
9.1.1b Quartz Scheduler Users

9.1.2 Step 1: Configure the Terracotta Platform
9.1.2a TIMs for Clustering Enterprise Ehcache
9.1.2b TIMs for Clustering Quartz Scheduler
9.1.2c TIMs for Integrating an Application Server
9.1.2d Clustering a Web Application with Terracotta Web Sessions

9.1.3 Step 2: Configure Terracotta Products
9.1.3a Enterprise Ehcache Configuration
9.1.3b Enterprise Ehcache for Hibernate Configuration
9.1.3c Quartz Scheduler Configuration
9.1.3d Web Sessions Configuration

9.1.4 Step 3: Install the TIMs
9.1.4a Location of TIMs

9.1.5 Step 4: Start the Cluster
9.1.6 Quartz Scheduler DSO Installation

1 Getting Started

Terracotta product documentation focuses on the use of Terracotta products in a Terracotta cluster. Product
documentation covers the following products and core components:

Enterprise Ehcache – Standards-based Java cache. Separate chapters cover Enterprise Ehcache and
Enterprise Ehcache for Hibernate.
BigMemory – Massive boost for data in server memory without Java GC constraints. This product is
covered in the Terracotta Server Array chapter. Documentation on BigMemory for Ehcache is covered
by Ehcache documentation .
Quartz Scheduler – Scalable Java job scheduler. Chapter covers how to install and use the
TerracottaJobStore for Quartz Scheduler.
Web Sessions – Solution for clustering web sessions.
Terracotta Server Array – The Terracotta platform forming the backbone of Terracotta clusters.

Terracotta products are Enterprise Edition (ee) versions of Terracotta software, also known as commercial
versions. Users of the Terracotta Enterprise Suite have access to all of the listed products, including all of the
features available with those products. Users of open-source versions of Terracotta software can also use this
documentation, but have access to a limited number of products and features. See
http://www.terracotta.org/products for more information.

1.0.1 Using Product Documentation
Product documentation is aimed at helping you quickly get a clustered application up and running. Start by
choosing the installation section in the chapter for your Terracotta product. Following installation, or if you
experience trouble, see the reference sections that follow the installation section.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

6 of 162 2011-06-03 11:26

NOTE: Standard and DSO Installations

The installation procedures given in the chapters on Terracotta products are the recommended standard
installations. If you require object identity, must share non-serializable objects, or have other
requirements that can only be met by using a cluster based on Terracotta Distributed Shared Objects (DSO),
see the chapter on installing with DSO. DSO uses object identity, instrumented classes (byte-code
instrumentation), object-graph roots, and cluster-wide locks to maintain data coherence.

The threshold for successfully setting up a DSO cluster can be substantially higher than for a non-DSO cluster
due to DSO’s stricter code and configuration requirements. It is recommended that if possible you use the
standard installation (also called express installation) to set up a non-DSO cluster. Use the DSO installation
only if your deployment requires the features of DSO.

You cannot combine a standard installation with a DSO installation.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

7 of 162 2011-06-03 11:26

To learn more about cluster configuration options, production architectures, security, High Availability, and
performance optimization, see the chapter on Terracotta Server Arrays.

To learn more about using the tools available through the Terracotta API in your application, see the chapter
on the Terracotta Toolkit. This chapter is appropriate for developers who want to integrate Terracotta
functionality directly.

A number of useful Terracotta tools are available with the kit, including the Developer Console. See the
chapter on tools for more information on Terracotta tools.

1.0.2 Using a License File
A Terracotta license file is required to run enterprise versions of Terracotta products. Note the following:

The name of the file is terracotta-license.key and must not be changed.
The number of Terracotta clients that can run simultaneously in the cluster is fixed by the file and
cannot be changed without obtaining a new file.
Trial versions of Terracotta enterprise products expire after a trial period. Expiration warnings are
issued both to logs and standard output to allow enough time to contact Terracotta for an extension.

Each Terracotta client and server instance in your cluster requires a copy of the license file or configuration
that specifies the file’s location. By default, the file is provided in the root directory of the Terracotta kit. To
avoid having to explicitly specify the file’s location, you can leave it in the Terracotta kit’s root directory. Or,
more generally, ensure that the resource /terracotta-license.key is on the same classpath as the
Terracotta Toolkit runtime JAR. (The standard Terracotta Toolkit runtime JAR is included with the Terracotta
kit. See the installation section in the chapter for your Terracotta product for more information on how to
install this JAR file). For example, the license file could be placed in WEB-INF/classes when using a web
application.

1.0.2a Explicitly Specifying the Location of the License File

If the file is in the Terracotta installation directory, you can specify it with:

-Dtc.install-root=/path/to/terracotta-install-dir

If the file is in a different location, you can specify it with:

-Dcom.tc.productkey.path=/path/to/terracotta-license.key

Alternatively, the path to the license file can be specified by adding the following to the beginning of the
Terracotta configuration file (tc-config.xml by default):

<tc-properties>
 <property name="productkey.path" value="path/to/terracotta-license.key" />
 <!-- Other tc.properties here. -->
</tc-properties>

To refer to a license file that is in a WAR or JAR file, substitute productkey.resource.path for
productkey.path .

1.0.2b Verifying Products and Features

There are a number of ways to verify what products and features are allowed and what limitations are
imposed by your product key. The first is by looking at the readable file (terracotta-license.key)
containing the product key.

Second, at startup Terracotta software logs a message detailing the product key. The message is printed to
the log and to standard output. The message should appear similar to the following:

2010-11-03 15:56:53,701 INFO - Terracotta license loaded from /Downloads/terracotta-ee-3.4.0/terracotta-
license.key
Capabilities: DCV2, authentication, ehcache, ehcache monitor, ehcache offheap, operator console, quartz,
roots, server array offheap, server striping, sessions
Date of Issue: 2010-10-16
Edition: FX
Expiration Date: 2011-01-03
License Number: 0000
License Type: Trial
Licensee: Terracotta QA
Max Client Count: 100
Product: Enterprise Suite
ehcache.maxOffHeap: 200G
terracotta.serverArray.maxOffHeap: 200G

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

8 of 162 2011-06-03 11:26

Terracotta server information panels in the Terracotta Developer Console and Terracotta Operations Center
also contain license details.

1.0.3 Using Apache Maven
Apache Maven users can set up the Terracotta repository for Terracotta artifacts (including Ehcache, Quartz,
and other Terracotta projects) using the URL shown:

<repository>
 <id>terracotta-repository</id>
 <url>http://www.terracotta.org/download/reflector/releases</url>
 <releases>
 <enabled>true</enabled>
 </releases>
</repository>

A complete repository list is given below. Note the following when using Maven:

The repository URL is not browsable.
If you intend to work with Terracotta SNAPSHOT projects (usually in trunk), see 1.0.3c Working With
Terracotta SNAPSHOT Projects.
Coordinates for specific artifacts can be found by running tim-get with the info command:

UNIX/LINUX
${TERRACOTTA_HOME}/bin/tim-get.sh info <name of artifact>

MICROSOFT WINDOWS
%TERRACOTTA_HOME%\bin\tim-get.bat info <name of artifact>

You can generate a complete list of artifacts by running tim-get with the list command:

UNIX/LINUX
${TERRACOTTA_HOME}/bin/tim-get.sh list

MICROSOFT WINDOWS
%TERRACOTTA_HOME%\bin\tim-get.bat list

You can use the artifact versions in a specific kit when configuring a POM. Artifacts in a specific kit are
guaranteed to be compatible.

NOTE: Errors Caused by Outdated Dependencies

Certain frameworks, including Hibernate and certain Spring modules, may have POMs with
dependencies on outdated versions of Terracotta products. This can cause older versions of
Terracotta products to be installed in your application’s classpath ahead of the current versions of
those products, resulting in NoClassDefFound, NoSuchMethod, and other errors. At best, your
application may run but not perform correctly. Be sure to locate and remove any outdated
dependencies before running Maven.

1.0.3a Creating Enterprise Edition Clients

The following example shows the dependencies needed for creating Terracotta 3.4.0 ee clients, not clients
based on the current Terracotta 3.5.0 kit. Version numbers can be found in the specific Terracotta kit you
are installing. Be sure to update all artifactIds and versions to match those found in your kit.

<dependencies>
 <!-- The Terracotta Toolkit is required for running a client. The API version for this Toolkit is
1.1. -->
 <dependency>
 <groupId>org.terracotta</groupId>
 <artifactId>terracotta-toolkit-1.1-runtime-ee</artifactId>
 <version>2.0.0</version>
 </dependency>

 <!-- The following dependencies are required for using Ehcache. Dependencies not listed here include
the SLF4J API JAR (version 1.5.11) and an SLF4J binding JAR of your choice. These JARs specify the
logging framework required by Ehcache. It also does not include the explicit-locking JAR.-->
 <dependency>
 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-core-ee</artifactId>
 <version>2.3.0</version>
 </dependency>
 <dependency>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

9 of 162 2011-06-03 11:26

 <groupId>net.sf.ehcache</groupId>
 <artifactId>ehcache-terracotta-ee</artifactId>
 <version>2.3.0</version>
 </dependency>

<!-- The following dependencies are required for using Quartz Scheduler. -->
 <dependency>
 <groupId>org.quartz</groupId>
 <artifactId>quartz</artifactId>
 <version>1.8.4</version>
 </dependency>
 <dependency>
 <groupId>org.quartz</groupId>
 <artifactId>quartz-terracotta</artifactId>
 <version>1.2.1</version>
 </dependency>

<!-- The following dependencies are required for using Terracotta Sessions. -->
 <dependency>
 <groupId>org.terracotta</groupId>
 <artifactId>terracotta-session</artifactId>
 <version>1.1.1</version>
 </dependency>
</dependencies>

Open-source clients can be created using non-ee artifacts.

1.0.3b Using the tc-maven Plugin

The tc-maven plugin can simplify the process of integrating and testing Terracotta products and other assets.
The plugin supplies a number of useful tasks, including starting, stopping, and pausing Terracotta servers. To
integrate the plugin, add the following to your project’s POM:

<plugin>
 <groupId>org.terracotta.maven.plugins</groupId>
 <artifactId>tc-maven-plugin</artifactId>
 <version>1.6.1</version>
</plugin>

If you are using the tc-maven plugin with an ee kit, you must have the terracotta-
ee-<version>.jar file in your project. This JAR file is not available form a public repository. You must
obtain it from your Terracotta representative and install it to your local repository. For example, to install
version 3.4.0 of this JAR file:

mvn install:install-file -Dfile=terracotta-ee-3.5.0.jar -DpomFile=terracotta-ee-3.5.0.pom
-Dpackaging=jar -Dversion=3.5.0

This command format assumes that the JAR and POM files are available in the local directory. If they are not,
you must provide the files’ paths as well.

1.0.3c Working With Terracotta SNAPSHOT Projects

If you intend to work with Terracotta SNAPSHOT projects (usually in trunk), you must have the following
settings.xml file installed:

<settings xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/settings-
1.0.0.xsd">
 <profiles>
 <profile>
 <id>terracotta-repositories</id>
 <repositories>
 <repository>
 <id>terracotta-snapshots</id>
 <url>http://www.terracotta.org/download/reflector/snapshots</url>
 </repository>
 </repositories>
 <pluginRepositories>
 <pluginRepository>
 <id>terracotta-snapshots</id>
 <url>http://www.terracotta.org/download/reflector/snapshots</url>
 </pluginRepository>
 </pluginRepositories>
 </profile>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

10 of 162 2011-06-03 11:26

 </profiles>
 <activeProfiles>
 <activeProfile>terracotta-repositories</activeProfile>
 </activeProfiles>
</settings>

1.0.3d Terracotta Repositories

The following contains all of the Terracotta repositories available:

<repositories>
 <repository>
 <id>terracotta-snapshots</id>
 <url>http://www.terracotta.org/download/reflector/snapshots</url>
 <releases><enabled>false</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </repository>
 <repository>
 <id>terracotta-releases</id>
 <url>http://www.terracotta.org/download/reflector/releases</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>false</enabled></snapshots>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>terracotta-snapshots</id>
 <url>http://www.terracotta.org/download/reflector/snapshots</url>
 <releases><enabled>false</enabled></releases>
 <snapshots><enabled>true</enabled></snapshots>
 </pluginRepository>
 <pluginRepository>
 <id>terracotta-releases</id>
 <url>http://www.terracotta.org/download/reflector/releases</url>
 <releases><enabled>true</enabled></releases>
 <snapshots><enabled>false</enabled></snapshots>
 </pluginRepository>
</pluginRepositories>

2 Enterprise Ehcache With Terracotta Clustering

Enterprise Ehcache with Terracotta clustering combines the power of the Terracotta platform with the ease
of Ehcache application-data caching. By integrating Enterprise Ehcache with the Terracotta platform, you
can:

linearly scale your application to grow with requirements;
rely on data that remains consistent across the cluster;
offload databases to reduce the associated overhead;
increase application performance with distributed in-memory data.

To install Enterprise Ehcache, see Enterprise Ehcache Installation.

2.1 Enterprise Ehcache Installation
This document shows you how to add Terracotta clustering to an application that is using Ehcache.

Use this express installation if you have been running your application:

on a single JVM, or
on a cluster using Ehcache replication.

To set up the cluster with Terracotta, you will add a Terracotta JAR to each application and run a Terracotta
server array. Except as noted below, you can continue to use Ehcache in your application as specified in the
Ehcache documentation .

To add Terracotta clustering to an application that is using Ehcache, follow these steps:

2.1.1 Step 1: Requirements

JDK 1.5 or higher.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

11 of 162 2011-06-03 11:26

Terracotta 3.5.0
Download the kit and run the installer on the machine that will host the Terracotta server.
All clustered objects must be serializable.
If you cannot use Serializable classes, you must use an identity cache with a custom installation (see
Terracotta DSO Installation). Identity cache, which requires DSO, is not supported with this
installation.

2.1.2 Step 2: Install the Distributed Cache
For guaranteed compatibility, use the JAR files included with the Terracotta kit you are installing. Mixing
with older components may cause errors or unexpected behavior.

To install the distributed cache in your application, add the following JAR files to your application's
classpath:

${TERRACOTTA_HOME}/ehcache/lib/ehcache-terracotta-ee-<version>.jar
<version> is the current version of the Ehcache-Terracotta JAR.
${TERRACOTTA_HOME}/ehcache/lib/ehcache-core-ee-<ehcache-version>.jar
The Ehcache core libraries, where <ehcache-version> is the current version of Ehcache (2.4.1 or
higher).
${TERRACOTTA_HOME}/ehcache/lib/slf4j-api-<slf4j-version>.jar
The SLF4J logging facade allows Ehcache to bind to any supported logger used by your application.
Binding JARs for popular logging options are available from the SLF4J project . For convenience, the
binding JAR for java.util.logging is provided in ${TERRACOTTA_HOME}/ehcache (see
below).
${TERRACOTTA_HOME}/ehcache/lib/slf4j-jdk14-<slf4j-version>.jar
An SLF4J binding JAR for use with the standard java.util.logging , also known as JDK 1.4
logging.
${TERRACOTTA_HOME}/common/terracotta-toolkit-<API-version>-runtime-
ee-<version>.jar
The Terracotta Toolkit JAR contains the Terracotta client libraries. <API-version> refers to the
Terracotta Toolkit API version. <version> is the current version of the Terracotta Toolkit JAR.

If you are using the open-source edition of the Terracotta kit, no JAR files will have "-ee-" as part of their
name.

If you are using a WAR file, add these JAR files to its WEB-INF/lib directory.

NOTE: Application Servers

Most application servers (or web containers) should work with this installation of Enterprise Ehcache.
However, note the following:

- GlassFish application server – You must add the following to domains.xml :

<jvm-options>-Dcom.sun.enterprise.server.ss.ASQuickStartup=false</jvm-
options>

- WebLogic application server – You must use the supported version of WebLogic.

2.1.3 Step 3: Configure the Distributed Cache
The Ehcache configuration file, ehcache.xml by default, must be on your application's classpath. If you
are using a WAR file, add the Ehcache configuration file to WEB-INF/classes or to a JAR file that is
included in WEB-INF/lib .

Create a basic Ehcache configuration file called ehcache.xml :

<?xml version="1.0" encoding="UTF-8"?>
<ehcache name="myCache"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd">
 <defaultCache
 maxElementsInMemory="0"
 eternal="false"
 timeToIdleSeconds="1200"
 timeToLiveSeconds="1200">
 <terracotta />
 </defaultCache>
 <terracottaConfig url="localhost:9510" />
</ehcache>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

12 of 162 2011-06-03 11:26

This defaultCache configuration includes Terracotta clustering. The Terracotta client must load a Terracotta
configuration (separate from the Ehcache configuration) from a file or a Terracotta server. The value of the
<terracottaConfig /> element’s url attribute should contain a path to that file or to the address and DSO
port (9510 by default) of a server. In the example value, "localhost:9510" means that the Terracotta server is
on the local host. If the Terracotta configuration source changes at a later time, it must be updated in
configuration.

TIP: Terracotta Clients and Servers

In a Terracotta cluster, the application server is also known as the client.

2.1.3a Add Terracotta to Specific Caches

For any cache that should be clustered by Terracotta, add the sub-element <terracotta /> to that cache's
<cache> block in ehcache.xml . For example, the following cache is clustered with Terracotta:

<cache name="myCache" maxElementsInMemory="1000"
 maxElementsOnDisk="10000" eternal="false" timeToIdleSeconds="3600"
 timeToLiveSeconds="0" memoryStoreEvictionPolicy="LFU">
 <!-- Adding the element <terracotta /> turns on Terracotta clustering for the cache myCache. -->
 <terracotta />
</cache>

See 2.3.1e Controlling Cache Size for information on using configuration to tune memory and disk storage
limits.

2.1.3b Edit Incompatible Configuration

For any clustered cache, you must delete, disable, or edit configuration elements that are incompatible
when clustering with Terracotta. Clustered caches have a <terracotta> or <terracotta clustered="true">
element.

The following Ehcache configuration attributes or elements should be deleted or disabled:

DiskStore-related attributes overflowToDisk and diskPersistent .
The Terracotta server automatically provides a disk store.
Replication-related attributes such as replicateAsynchronously and replicatePuts .
The attribute MemoryStoreEvictionPolicy must be set to either LFU or LRU.
Setting MemoryStoreEvictionPolicy to FIFO causes the error
IllegalArgumentException .

2.1.4 Step 4: Start the Cluster

1. Start the Terracotta server:

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.bat

2. Start the application servers.
3. Start the Terracotta Developer Console:

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/dev-console.sh &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\dev-console.bat

4. Connect to the Terracotta cluster.
Click Connect... in the Terracotta Developer Console.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

13 of 162 2011-06-03 11:26

5. Click the Ehcache node in the cluster navigation window to see the caches in the Terracotta cluster.
Your console should have a similar appearance to the following annotated figure.

2.1.5 Step 5: Edit the Terracotta Configuration
This step shows you how to run clients and servers on separate machines and add failover (High Availability).
You will expand the Terracotta cluster and add High Availability by doing the following:

Moving the Terracotta server to its own machine
Creating a cluster with multiple Terracotta servers
Creating multiple application nodes

These tasks bring your cluster closer to a production architecture.

2.1.5a Procedure:

1. Shut down the Terracotta cluster.
2. Create a Terracotta configuration file called tc-config.xml with contents similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<!-- All content copyright Terracotta, Inc., unless otherwise indicated. All rights reserved. -->
<tc:tc-config xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-5.xsd"

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

14 of 162 2011-06-03 11:26

xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <servers>
 <!-- Sets where the Terracotta server can be found. Replace the value of host with the server's IP
address. -->
 <server host="server.1.ip.address" name="Server1">
 <data>%(user.home)/terracotta/server-data</data>
 <logs>%(user.home)/terracotta/server-logs</logs>
 </server>
 <!-- If using a standby Terracotta server, also referred to as an ACTIVE-PASSIVE configuration, add
the second server here. -->
 <server host="server.2.ip.address" name="Server2">
 <data>%(user.home)/terracotta/server-data</data>
 <logs>%(user.home)/terracotta/server-logs</logs>
 </server>
<!-- If using more than one server, add an <ha> section. -->
 <ha>
 <mode>networked-active-passive</mode>
 <networked-active-passive>
 <election-time>5</election-time>
 </networked-active-passive>
 </ha>
 </servers>
 <!-- Sets where the generated client logs are saved on clients. Note that the exact location of
Terracotta logs on client machines may vary based on the value of user.home and the local disk layout.
-->
 <clients>
 <logs>%(user.home)/terracotta/client-logs</logs>
 </clients>
</tc:tc-config>

3. Install Terracotta 3.5.0 on a separate machine for each server you configure in tc-config.xml .
4. Copy the tc-config.xml to a location accessible to the Terracotta servers.
5. Perform Step 2: Install the Distributed Cache and Step 3: Configure the Distributed Cache on each

application node you want to run in the cluster.
Be sure to install your application and any application servers on each node.

6. Add the following to the Ehcache configuration file, ehcache.xml :

<!-- Add the servers that are configured in tc-config.xml. -->
<terracottaConfig url="server.1.ip.address:9510,server.2.ip.address:9510" />

7. Copy ehcache.xml to each application node and ensure that it is on your application's classpath. If
you are using a WAR file, add the Ehcache configuration file to WEB-INF/classes or to a JAR file
that is included in WEB-INF/lib .

8. Start the Terracotta server in the following way, replacing "Server1" with the name you gave your
server in tc-config.xml :

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh -f <path/to/tc-config.xml> -n Server1 &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.bat -f <path\to\tc-config.xml> -n Server1 &

If you configured a second server, start that server in the same way on its machine, entering its name
after the -n flag. The second server to start up becomes the "hot" standby, or PASSIVE. Any other
servers you configured will also start up as standby servers.

9. Start all application servers.
10. Start the Terracotta Developer Console and view the cluster.

2.1.6 Step 6: Learn More
To learn more about using Terracotta Ehcache distributed cache, start with the following document:

Enterprise Ehcache Configuration Reference
General Ehcache documentation

To learn more about working with a Terracotta cluster, see the following documents:

6.1 Working with Terracotta Configuration Files – Explains how tc-config.xml is propagated and

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

15 of 162 2011-06-03 11:26

loaded in a Terracotta cluster in different environments.
6.3 Terracotta Server Arrays – Shows how to design Terracotta clusters that are fault-tolerant,
maintain data safety, and provide uninterrupted uptime.
6.2 Configuring Terracotta Clusters For High Availability – Defines High Availability configuration
properties and explains how to apply them.
8.1 Terracotta Developer Console – Provides visibility into and control of caches.

2.2 Enterprise Ehcache API Guide
Enterprise Ehcache has a rich API for extending your application’s capabilities.

2.2.1 Enterprise Ehcache Search API For Clustered Caches
Enterprise Ehcache Search is a powerful search API for querying clustered caches in a Terracotta cluster.
Designed to be easy to integrate with existing projects, the Ehcache Search API can be implemented with
configuration or programmatically. The following is an example from an Ehcache configuration file:

<cache name="myCache" maxElementsInMemory="0" eternal="true"
 overflowToDisk="false">
 <searchable>
 <searchAttribute name="age" />
 <searchAttribute name="first_name" expression="value.getFirstName()" />
 <searchAttribute name="last_name" expression="value.getLastName()" />
 <searchAttribute name="zip_code" expression="value.getZipCode()" />
 </searchable>
 <terracotta />
</cache>

By default, the storageStrategy used by myCache is "DCV2". Enterprise Ehcache Search cannot be used with
caches that have the "classic" storageStrategy.

2.2.1a Sample Code

The following example assumes there is a Person class that serves as the value for elements in myCache.
With the exception of "age" (which is bean style), each expression attribute in searchAttribute is
set to use an accessor method on the cache element's value. The Person class must have accessor methods to
match the configured expressions. In addition, assume that there is code that populates the cache. Here is
an example of search code based on these assumptions:

// After CacheManager and Cache created, create a query for myCache:

Query query = myCache.createQuery();

// Create the Attribute objects.

Attribute<String> last_name = myCache.getSearchAttribute("last_name");
Attribute<Integer> zip_code = myCache.getSearchAttribute("zip_code");
Attribute<Integer> age = myCache.getSearchAttribute("age");

// Specify the type of content for the result set.
// Executing the query without specifying desired results
// returns no results even if there are hits.

query.includeKeys(); // Return the keys for values that are hits.

// Define the search criteria.
// This following uses Criteria.and() to set criteria to find adults
// with the last name "Marley" whose address has the zip code "94102".

query.addCriteria(last_name.eq("Marley").and(zip_code.eq(94102)));

// Execute the query, putting the result set
// (keys to element that meet the search criteria) in Results object.

Results results = query.execute();

// Find the number of results -- the number of hits.

int size = results.size();
// Discard the results when done to free up cache resources.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

16 of 162 2011-06-03 11:26

results.discard();

// Using an aggregator in a query to get an average age of adults:

Query averageAgeOfAdultsQuery = myCache.createQuery();
averageAgeOfAdultsQuery.addCriteria(age.ge(18));
averageAgeOfAdultsQuery.includeAggregator(age.average());
Results averageAgeOfAdults = averageAgeOfAdultsQuery.execute();

If (averageAgeOfAdults.size() > 0) {
 List aggregateResults = averageAgeOfAdults.all().iterator().next().getAggregatorResults();
 double averageAge = (Double) aggregateResults.get(0);
}

The following example shows how to programmatically create the cache configuration, with search
attributes.

Configuration cacheManagerConfig = new Configuration();

CacheConfiguration cacheConfig = new CacheConfiguration("myCache", 0).eternal(true);

Searchable searchable = new Searchable();
cacheConfig.addSearchable(searchable);

// Create attributes to use in queries.
searchable.addSearchAttribute(new SearchAttribute().name("age"));

// Use an expression for accessing values.
searchable.addSearchAttribute(new SearchAttribute()
 .name("first_name")
 .expression("value.getFirstName()"));

searchable.addSearchAttribute(new SearchAttribute().name("last_name").expression("value.getLastName()"));
 searchable.addSearchAttribute(new
SearchAttribute().name("zip_code").expression("value.getZipCode()"));

cacheManager = new CacheManager(cacheManagerConfig);
cacheManager.addCache(new Cache(cacheConfig));

Ehcache myCache = cacheManager.getEhcache("myCache");

// Now create the attributes and queries, then execute.
...

To learn more about the Ehcache Search API, see the net.sf.ehcache.search * packages in this
Javadoc .

2.2.1b Stored Search Indexes

Searches occur on indexes held by the Terracotta server. By default, index files are stored in /index under
the server's data directory. However, you can specify a different path using the <index> element:

...
 <server>
 <data>%(user.home)/terracotta/server-data</data>
 <index>%(user.home)/terracotta/index</index>
 <logs>%(user.home)/terracotta/server-logs</logs>
 <statistics>%(user.home)/terracotta/server-statistics</statistics>
 ...
 </server>
 ...

To enhance performance, it is recommended that you store server data and search indexes on different
disks.

2.2.1c Troubleshooting Ehcache Search

This section contains information on avoiding potential issues with using the Ehcache Search API.

Large Result Sets

If your query returns a result set containing a very large amount of data, performance degradation or errors
(such as OOME) could occur due to network and resource limitations. You can manage the size of result sets

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

17 of 162 2011-06-03 11:26

Method Definition

String getScheme()

Returns a scheme name for the cluster
information. Currently TERRACOTTA is the only
scheme supported. The scheme name is used by
CacheManager.getCluster() to return
cluster information (see Events API Example Code).

Collection<ClusterNode> getNodes()
Returns information on all the nodes in the cluster,
including ID, hostname, and IP address.

boolean
addTopologyListener(ClusterTopologyListener
listener)

Adds a cluster-events listener. Returns true if the
listener is already active.

boolean
removeTopologyListener(ClusterTopologyListener)

Removes a cluster-events listener. Returns true if
the listener is already inactive.

Method Definition

getId() Returns the unique ID assigned to the node.

by following these best practices:

Limit the size of the results set with Query.maxResults(int number_of_hits) .
Page the results set using Results.range(int start_index, int number_of_hits) .
Use a built-in Aggregator function to return a summary statistic (see the
net.sf.ehcache.search.aggregator package in this Javadoc).

Inconsistent Data

Ehcache Search guarantees that all local changes made before a query is executed are available to search
results. However, to maintain a high level of performance, cluster locks are not checked. This eventual
synchronization of clustered caches and search indexes means that remote changes may not be available to
queries until the changes are applied cluster wide (or, for transactional caches, commit() is called). Thus
it is possible to get results that include removed elements, inconsistent data from the same query executed
at different times, and calculated values that are no longer accurate (such as those returned by
aggregators).

You can take certain precautions to prevent these types of problems. For example, if your search uses
aggregators, add all aggregators to the same query to get consistent data. If your code attempts to get values
using keys returned by a query, use null guards.

Slow to Return

Search strings leading with the wildcard character asterisk ("*") or question mark ("?") can be very slow to
return results.

Failures

Failure to return is handled by a CacheException. If an exception occurs when the value extractor (either
expression-based or custom) executes, the affected attribute value is omitted from the search index.

2.2.2 Enterprise Ehcache Cluster Events
The Enterprise Ehcache cluster events API provides access to Terracotta cluster events and cluster topology.

2.2.2a Cluster Topology

The interface net.sf.ehcache.cluster.CacheCluster provides methods for obtaining topology
information for a Terracotta cluster. The following table lists these methods.

The interface net.sf.ehcache.cluster.ClusterNode provides methods for obtaining information
on specific Terracotta nodes in the cluster. The following table lists these methods.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

18 of 162 2011-06-03 11:26

getHostname() Return the hostname on which the node is running.

getIp() Return the IP address on which the node is running.

Method Definition

public boolean
isClusterBulkLoadEnabled()

Returns true if a cache is in bulk-load mode (is not
consistent) throughout the cluster. Returns false if
the cache is not in bulk-load mode (is consistent)
anywhere in the cluster.

2.2.2b Cluster Events

The interface net.sf.ehcache.cluster.ClusterTopologyListener provides methods for
detecting the following cluster events:

nodeJoined(ClusterNode)
nodeLeft(ClusterNode)
clusterOnline(ClusterNode)
clusterOffline(ClusterNode)

2.2.2c Events API Example Code
// Get cluster data
CacheManager mgr = new CacheManager(); // Local ehcache.xml exists, with at least one cache configured
with Terracotta clustering.
CacheCluster cluster = mgr.getCluster("TERRACOTTA");

NOTE: Programmatic Creation of CacheManager

If a CacheManager instance is created and configured programmatically (without an ehcache.xml or
other external configuration resource),
getCluster("TERRACOTTA") may return null even if a Terracotta cluster exists. To ensure that
cluster information is returned in this case, get a cache that is clustered with Terracotta:
// mgr created and configured programmatically.
CacheManager mgr = new CacheManager();
// myCache has Terracotta clustering.
Cache cache = mgr.getEhcache("myCache");
// A Terracotta client has started, making available cluster information.
CacheCluster cluster = mgr.getCluster("TERRACOTTA");

// Get current nodes
Collection<ClusterNode> nodes = cluster.getNodes();
for(ClusterNode node : nodes) {
 System.out.println(node.getId() + " " + node.getHostname() + " " + node.getIp());
}

// Register listener
cluster.addTopologyListener(new ClusterTopologyListener() {
 public void nodeJoined(ClusterNode node) { System.out.println(node + " joined"); }
 public void nodeLeft(ClusterNode node) { System.out.println(node + " left"); }
 public void clusterOnline(ClusterNode node) { System.out.println(node + " enabled"); }
 public void clusterOffline(ClusterNode node) { System.out.println(node + " disabled"); }
});

2.2.3 Bulk-Load API
The Enterprise Ehcache bulk-load API can optimize bulk-loading of caches by removing the requirement for
locks and adding transaction batching. The bulk-load API also allows applications to discover whether a cache
is in bulk-load mode and to block based on that mode.

NOTE: The Bulk-Load API and the Configured Consistency Mode

The initial consistency mode of a cache is set by configuration and cannot be changed programmatically
(see the attribute "consistency" in <terracotta>). The bulk-load API should be used for temporarily
suspending the configured consistency mode to allow for bulk-load operations.

The following table lists the bulk-load API methods that are available in
org.terracotta.modules.ehcache.Cache .

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

19 of 162 2011-06-03 11:26

public boolean
isNodeBulkLoadEnabled()

Returns true if a cache is in bulk-load mode (is not
consistent) on the current node. Returns false if
the cache is not in bulk-load mode (is consistent)
on the current node.

public void
setNodeBulkLoadEnabled(boolean)

Sets a cache’s consistency mode to the configured
mode (false) or to bulk load (true) on the local
node. There is no operation if the cache is already
in the mode specified by
setNodeBulkLoadEnabled() . When using
this method on a nonstop cache , a multiple of the
nonstop cache’s timeout value applies. The
bulk-load operation must complete within that
timeout multiple to prevent the configured
nonstop behavior from taking effect. For more
information on tuning nonstop timeouts, see
Tuning Nonstop Timeouts and Behaviors.

public void
waitUntilBulkLoadComplete()

Waits until a cache is consistent before returning.
Changes are automatically batched and the cache
is updated throughout the cluster. Returns
immediately if a cache is consistent throughout the
cluster.

Note the following about using bulk-load mode:

Consistency cannot be guaranteed because isClusterBulkLoadEnabled() can return false in
one node just before another node calls setNodeBulkLoadEnabled(true) on the same cache.
Understanding exactly how your application uses the bulk-load API is crucial to effectively managing
the integrity of cached data.
If a cache is not consistent, any ObjectNotFound exceptions that may occur are logged.
get() methods that fail with ObjectNotFound return null.
Eviction is independent of consistency mode. Any configured or manually executed eviction proceeds
unaffected by a cache’s consistency mode.

2.2.3a Bulk-Load API Example Code

The following example code shows how a clustered application with Enterprise Ehcache can use the
bulk-load API to optimize a bulk-load operation:

import net.sf.ehcache.Cache;

public class MyBulkLoader {
 CacheManager cacheManager = new CacheManager(); // Assumes local ehcache.xml.
 Cache cache = cacheManager.getEhcache("myCache"); // myCache defined in ehcache.xml.
 cache.setNodeBulkLoadEnabled(true); // myCache is now in bulk mode.

 // Load data into myCache.

 cache.setNodeBulkLoadEnabled(false); // Done, now set myCache back to its configured consistency mode.
}

On another node, application code that intends to touch myCache can run or wait, based on whether
myCache is consistent or not:

...
 if (!cache.isClusterBulkLoadEnabled()) {

 // Do some work.
 }

 else {

 cache.waitUntilBulkLoadComplete()
 // Do the work when waitUntilBulkLoadComplete() returns.
}
...

Waiting may not be necessary if the code can handle potentially stale data:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

20 of 162 2011-06-03 11:26

public String getName() Returns the name of the unlocked cache view.

public Element get(final Object
key)

public Element get(final
Serializable key)

Returns the data under the given key. Returns null
if data has expired.

public Element getQuiet(final
Object key)

public Element getQuiet(final
Serializable key)

Returns the data under the given key without
updating cache statistics. Returns null if data has
expired.

...
 if (!cache.isClusterBulkLoadEnabled()) {

 // Do some work.
 }

 else {

 // Do some work knowing that data in myCache may be stale.

 }
...

2.2.4 Unlocked Reads for Consistent Caches (UnlockedReadsView)
Certain environments require consistent cached data while also needing to provide optimized reads of that
data. For example, a financial application may need to display account data as a result of a large number of
requests from web clients. The performance impact of these requests can be reduced by allowing unlocked
reads of an otherwise locked cache.

In cases where there is tolerance for getting potentially stale data, an unlocked (inconsistent) reads view can
be created for Cache types using the UnlockedReadsView decorator. UnlockedReadsView requires Ehcache
2.1 or higher. The underlying cache must have Terracotta clustering and use the strong consistency mode.
For example, the following cache can be decorated with UnlockedReadsView:

<cache name="myCache"
 maxElementsInMemory="500"
 eternal="false"
 overflowToDisk="false"
 <terracotta clustered="true" consistency="strong" />
</cache>

You can create an unlocked view of myCache programmatically:

Cache cache = cacheManager.getEhcache("myCache");
UnlockedReadsView unlockedReadsView = new UnlockedReadsView(cache, "myUnlockedCache");

The following table lists the API methods available with the decorator
net.sf.ehcache.constructs.unlockedreadsview.UnlockedReadsView .

Method Definition

2.2.4a UnlockedReadsView and Data Freshness

By default, caches have the following attributes set as shown:

<cache ... copyOnRead="true" ... >
...
 <terracotta ... consistency="strong" storageStrategy="DCV2" ... />
...
</cache>

Default settings are designed to make distributed caches more efficient and consistent in most use cases.

2.2.5 Explicit Locking
The explicit locking methods for Enterprise Ehcache provide simple key-based locking that preservers

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

21 of 162 2011-06-03 11:26

public void acquireReadLockOnKey(Object
key)

Set a read lock on the element specified by the
argument (key).

public void
acquireWriteLockOnKey(Object key)

Set a write lock on the element specified by the
argument (key).

public void
releaseReadLockOnKey(Object key)

Remove a read lock from the element specified by
the argument (key).

public void
releaseReadLockOnKey(Object key)

Remove a write lock from the element specified by
the argument (key).

concurrency while also imposing cluster-wide consistency. If certain operations on cache elements must be
locked, use the explicit locking methods available in the Cache type.

The explicit locking methods are listed in the following table:

The following example shows how to use explicit locking methods:

String key1 = "123";
Foo val1 = new Foo();
cache.acquireWriteLockOnKey(key1);
try {
 cache.put(new Element(key1, val1));
 } finally {
 cache.releaseWriteLockOnKey(key1);
 }

// Now safely read val1.
cache.acquireReadLockOnKey(key1);
try {
 Object cachedVal1 = cache.get(key1).getValue();
 } finally {
 cache.releaseReadLockOnKey(key);
 }

For locking available through the Terracotta Toolkit API, see 7.1.2e Locks.

2.2.6 Configuration Using the Fluent Interface
You can configure clustered CacheManagers and caches using the fluent interface as follows:

...
Configuration configuration =
new Configuration().terracotta(newTerracottaClientConfiguration()
 .url("localhost:9510"))
 // == <terracottaConfig url="localhost:9510 />
 .defaultCache(new CacheConfiguration("defaultCache", 100))
 // == <defaultCache maxElementsInMemory="100" ... />
 .cache(new CacheConfiguration("example", 100)
 // == <cache name="example" maxElementsInMemory="100" ... />
 .timeToIdleSeconds(5)
 .timeToLiveSeconds(120)
 // added these TTI and TTL attributes to the cache "example"
 .terracotta(new TerracottaConfiguration()));
 // added <terracotta /> element in the cache "example"

// Pass the configuration to the CacheManager.
this.cacheManager = new CacheManager(configuration);
...

2.2.7 Write-Behind Queue in Enterprise Ehcache
If your application uses the write-behind API with Ehcache and you cluster Ehcache with Terracotta, the
write-behind queue automatically becomes a clustered write-behind queue. The clustered write-behind
queue features the following characteristics:

Atomic – Put and remove operations are guaranteed to succeed or fail. Partial completion of
transactions cannot occur.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

22 of 162 2011-06-03 11:26

Distributable – Work is distributable among nodes in the cluster.
Durable – Terracotta clustering guarantees that a lost node does not result in lost data. Terracotta
servers automatically ensure that another node receives the queued data belonging to the lost node.
Performance enhancement – Asynchronous writes reduce the load on databases.

The write-behind queue is enabled for a cache with the <cacheWriter /> element. For example:

<cache name="myCache" eternal="false" maxElementsInMemory="1000" overflowToDisk="false">
 <cacheWriter writeMode="write_behind" maxWriteDelay="8" rateLimitPerSecond="5"
writeCoalescing="true" writeBatching="true" writeBatchSize="20" writeBehindMaxQueueSize="500"
retryAttempts="2" retryAttemptDelaySeconds="2">
 <cacheWriterFactory class="com.company.MyCacheWriterFactory"
 properties="just.some.property=test; another.property=test2"
propertySeparator=";"/>
 </cacheWriter>
</cache>

Values for <cacheWriter /> attributes can also be set programmatically. For example, the value for
writeBehindMaxQueueSize , which sets the maximum number of pending writes (the maximum
number of elements that can be waiting in the queue for processing), can be set with
net.sf.ehcache.config.CacheWriterConfiguration.setWriteBehindMaxQueueSize()
.

See the Ehcache documentation for more information on the write-behind API and on using synchronous
write-through caching.

2.3 Enterprise Ehcache Configuration Reference
Enterprise Ehcache uses the standard Ehcache configuration file to set clustering and consistency behavior,
optimize cached data, integrate with JTA and OSGi, and more.

2.3.1 Ehcache Configuration File
The Enterprise Ehcache configuration file (ehcache.xml by default) contains the configuration for one
instance of a CacheManager (the Ehcache class managing a set of defined caches). This configuration file
must be in your application's classpath to be found. When using a WAR file, ehcache.xml should be copied
to WEB-INF/classes .

TIP: Naming the CacheManager

If you employ multiple Ehcache configuration files, use the name attribute in the <ehcache> element to
identify specific CacheManagers in the cluster. The Terracotta Developer Console provides a menu listing
these names, allowing you to choose the CacheManager you want to view.

Note the following about ehcache.xml in a Terracotta cluster:

The copy on disk is loaded into memory from the first Terracotta client (also called application server
or node) to join the cluster.
Once loaded, the configuration is persisted in memory by the Terracotta servers in the cluster and
survives client restarts.
In-memory configuration can be edited in the Terracotta Developer Console.
Changes take effect immediately but are not written to the original on-disk copy of ehcache.xml .
The in-memory cache configuration is removed with server restarts if the servers are in non-persistent
mode , which is the default.
The original (on-disk) ehcache.xml is loaded.
The in-memory cache configuration survives server restarts if the servers are in persistent mode
(default is non-persistent).
If you are using the Terracotta servers with persistence of shared data, and you want the cluster to
load the original (on-disk) ehcache.xml , the servers' database must be wiped by removing the data
files from the servers' server-data directory. This directory is specified in the Terracotta
configuration file in effect (tc-config.xml by default). Wiping the database causes all persisted
shared data to be lost .

2.3.1a Setting Cache Eviction

Cache eviction removes elements from the cache based on parameters with configurable values. Having an
optimal eviction configuration is critical to maintaining cache performance.

To add eviction and control the size of the cache, edit the values of the following <cache> attributes and

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

23 of 162 2011-06-03 11:26

tune these values based on results of performance tests:

timeToIdleSeconds – The maximum number of seconds an element can exist in the cache without being
accessed. The element expires at this limit and will no longer be returned from the cache. The default
value is 0, which means no TTI eviction takes place (infinite lifetime).
timeToLiveSeconds – The maximum number of seconds an element can exist in the cache regardless of
use. The element expires at this limit and will no longer be returned from the cache. The default
value is 0, which means no TTL eviction takes place (infinite lifetime).
maxElementsInMemory – The maximum number of elements allowed in a cache in any one Terracotta
client (also called application server or node). If this target is exceeded, eviction occurs to bring the
count within the allowed target. The default value is 0, which means no eviction takes place (infinite
size is allowed).
maxElementsOnDisk – The maximum sum total number of elements allowed for a cache in all
Terracotta clients. If this target is exceeded, eviction occurs to bring the count within the allowed
target. The default value is 0, which means no eviction takes place (infinite size is allowed). Note that
this value reflects storage allocated on the Terracotta Server Array.
eternal – If the cache’s eternal flag is set, it overrides any finite TTI/TTL values that have been set.

Ensure that the edited ehcache.xml is in your application's classpath. If you are using a WAR file,
ehcache.xml should be in WEB-INF/classes .

See 2.3.4 How Configuration Affects Element Eviction for more information on how configuration can impact
eviction. See 2.3.1d Terracotta Clustering Configuration Elements for definitions of other available
configuration properties.

2.3.1b Cache-Configuration File Properties

See Terracotta Clustering Configuration Elements for more information.

2.3.1c Exporting Configuration from the Developer Console

To create or edit a cache configuration in a live cluster, see 8.1.3d Editing Cache Configuration.

To persist custom cache configuration values, create a cache configuration file by exporting customized
configuration from the Terracotta Developer Console or create a file that conforms to the required format.
This file must take the place of any configuration file used when the cluster was last started.

2.3.1d Terracotta Clustering Configuration Elements

Certain elements in the Ehcache configuration control the clustering of caches with Terracotta.

<terracotta>

This element is an optional sub-element of <cache>. It can be set differently for each <cache> defined in
ehcache.xml .

<terracotta> has one subelement, <nonstop> (see 2.3.3 Non-Blocking Disconnected (Nonstop) Cache for
more information).

The following <terracotta> attributes allows you to control the type of data consistency for the distributed
cache:

consistency – Enables strong consistency ("strong" DEFAULT) or eventual consistency ("eventual"). When
strong, guarantees the consistency of the cache’s data across the cluster at all times at the cost of
performance. After any update is completed, no read can return a stale value. When eventual,
improves performance while guaranteeing eventual cluster-wide cache consistency. Once set, this
consistency mode cannot be changed except by reconfiguring the cache using a configuration file and
reloading the file. This setting cannot be changed programmatically.

Except for special cases, the following <terracotta> attributes should operate with their default values:

clustered – Enables ("true" DEFAULT) or disables ("false") Terracotta clustering of a specific cache.
Clustering is enabled if this attribute is not specified. Disabling clustering also disables the effects of all
of the other attributes.
synchronousWrites – Enables ("true") or disables ("false" DEFAULT) synchronous writes from Terracotta
clients (application servers) to Terracotta servers. Asynchronous writes (synchronousWrites="false")
maximize performance by allowing clients to proceed without waiting for a "transaction received"
acknowledgement from the server. This acknowledgement is unnecessary in most use cases.
Synchronous writes (synchronousWrites="true") provide extreme data safety at a very high performance
cost by requiring that a client receive server acknowledgement of a transaction before that client can
proceed. Enabling synchronous writes has a significant detrimental effect on cluster performance. If
the cache’s consistency mode is eventual (consistency="eventual"), or while it is set to bulk load using

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

24 of 162 2011-06-03 11:26

the bulk-load API, only asynchronous writes can occur (synchronousWrites="true" is ignored).
storageStrategy – Sets the strategy for storing the cache’s key set. Use "DCV2" (DEFAULT) to store the
cache’s key set on the Terracotta server array. DCV2 can be used only with serializable caches (the
valueMode attribute must be set to "serialization"), whether using the standard installation or DSO.
DCV2 takes advantage of performance optimization built into the Terracotta libraries. Use "classic" to
store all keys on every Terracotta client, but note that the performance optimization techniques built
into the Terracotta libraries will not be in effect . Identity caches (valueMode="identity") must use the
classic mode. For more information on using storageStrategy, see Offloading Large Caches.
concurrency – Sets the number of segments for the map backing the underlying server store. The
default (when this attribute is not set or set to 0) is 2048 segments with the DCV2 storageStrategy and
128 segments with the classic storageStrategy. See 2.3.2a Tuning Concurrency for more information on
how to tune this value for DCV2.
valueMode – Sets the type of cache to serialization (DEFAULT, the standard Ehcache "copy"
cache) or identity (Terracotta object identity). Identity mode is not available with the standard
(express) installation . Identity mode can be used only with a Terracotta DSO (custom) installation
(see Standard Versus DSO Installations).

TIP: Comparing Serialization and Identity Modes

In serialization mode, getting an element from the cache gets a copy of that element. Changes made
to that copy do not affect any other copies of the same element or the value in the cache. Putting
the element in the cache overwrites the existing value. This type of cache provides high performance
with small, read-only data sets. Large data sets with high traffic, or caches with very large elements,
can suffer performance degradation because this type of cache serializes clustered objects. This type
of cache cannot guarantee a consistent view of object values in read-write data sets if the
consistency attribute is disabled. Objects clustered in this mode must be serializable. Note that
getKeys() methods return serialized versions of the keys.

In identity mode, getting an element from the cache gets a reference to that element. Changes made
to the referenced element updates the element on every node on which it exists (or a reference to it
exists) as well as updating the value in the cache. Putting the element in the cache does not
overwrite the existing value. This mode guarantees data consistency. It can be used only with a
custom Terracotta Distributed Cache installation. Objects clustered in this mode must be portable
and must be locked when accessed. If you require identity mode, you must use DSO (see Terracotta
DSO Installation).

copyOnRead – DEPRECATED. Use the copyOnRead <cache> attribute. Enables ("true") or disables ("false"
DEFAULT) "copy cache" mode. If disabled, cache values are not deserialized on every read. For
example, repeated get() calls return a reference to the same object (references are ==).
When enabled, cache values are deserialized (copied) on every read and the materialized values are
not re-used between get() calls; each get() call returns a unique reference. When enabled, allows
Ehcache to behave as a component of OSGI, allows a cache to be shared by callers with different
classloaders, and prevents local drift if keys/values are mutated locally without being put back into
the cache. Enabling copyOnRead is relevant only for caches with valueMode set to serialization .
coherentReads – DEPRECATED. This attribute is superseded by the attribute consistency . Disallows
("true" DEFAULT) or allows ("false") "dirty" reads in the cluster. If set to "true", reads must be consistent
on any node and returned data is guaranteed to be consistent. If set to false, local unlocked reads are
allowed and returned data may be stale. Allowing dirty reads may boost the cluster’s performance by
reducing the overhead associated with locking. Read-only applications, applications where stale data
is acceptable, and certain read-mostly applications may be suited to allowing dirty reads.

The following attributes are used with Enterprise Ehcache for Hibernate:

localKeyCache – Enables ("true") or disables ("false" DEFAULT) a local key cache. Enterprise Ehcache for
Hibernate can cache a "hotset" of keys on clients to add locality-of-reference, a feature suitable for
read-only cases. Note that the set of keys must be small enough for available memory.
localKeyCacheSize – Defines the size of the local key cache in number (positive integer) of elements. In
effect if localKeyCache is enabled. The default value, 300000, should be tuned to meet application
requirements and environmental limitations.
orphanEviction – Enables ("true" DEFAULT) or disables ("false") orphan eviction. Orphans are cache
elements that are not resident in any Hibernate second-level cache but still present on the cluster's
Terracotta server instances.
orphanEvictionPeriod – The number of local eviction cycles (that occur on Hibernate) that must be
completed before an orphan eviction can take place. The default number of cycles is 4. Raise this
value for less aggressive orphan eviction that can reduce faulting on the Terracotta server, or raise it if
garbage on the Terracotta server is a concern.

Default Behavior

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

25 of 162 2011-06-03 11:26

By default, adding <terracotta /> to a <cache> block is equivalent to adding the following:

 <terracotta clustered="true" valueMode="serialization" consistency="strong" storageStrategy="DCV2" />

<terracottaConfig>

This element can not be used with a DSO installation (see Standard Versus DSO Installations). It enables the
client to identify a source of Terracotta configuration. It also allows a client to rejoin a cluster after
disconnecting from that cluster and being timed out by a Terracotta server. For more information on the
rejoin feature, see 2.3.7a Using Rejoin to Automatically Reconnect Terracotta Clients.

The client must load the configuration from a file or a Terracotta server. The value of the url attribute
should contain a path to the file or the address and DSO port (9510 by default) of a server. In the example
value, "localhost:9510" means that the Terracotta server is on the local host.

TIP: Terracotta Clients and Servers

In a Terracotta cluster, the application server is also known as the client.

For more information on client configuration, see the Clients Configuration Section in the Terracotta
Configuration Guide and Reference .

Using an URL Attribute

Add the url attribute to the <terracottaConfig> element as follows:

<terracottaConfig url="<source>" />

where <source> must be one of the following:

A path (for example, url="/path/to/tc-config.xml")
An URL (for example, url="http://www.mydomain.com/path/to/tc-config.xml)
A Terracotta host address in the form <host>:<dso-port> (for example, url="host1:9510")

Note the following about using server addresses in the form <host>:<dso-port>:

The default DSO port is 9510.
In a multi-server cluster, you can specify a comma-delimited list (for example,
url="host1:9510,host2:9510,host3:9510").
If the Terracotta configuration source changes at a later time, it must be updated in configuration.

Embedding Terracotta Configuration

You can embed the contents of a Terracotta configuration file in ehcache.xml as follows:

 <terracottaConfig>
 <tc-config>
 <servers>
 <server host="server1" name="s1"/>
 <server host="server2" name="s2"/>
 </servers>
 <clients>
 <logs>app/logs-%i</logs>
 </clients>
 </tc-config>
 </terracottaConfig>

Note that not all elements are supported. For example, the <dso> section of a Terracotta configuration file
is ignored in an Ehcache configuration file.

2.3.1e Controlling Cache Size

Certain Ehcache cache configuration attributes affect caches clustered with Terracotta.

The following example shows a cache configuration with a number of attributes aimed at controlling the size
of the cache:

<cache name="myCache" maxElementsInMemory="1000"
 maxElementsOnDisk="10000" eternal="false" timeToIdleSeconds="3600"
 timeToLiveSeconds="0" memoryStoreEvictionPolicy="LFU">
 <!-- Adding the element <terracotta /> turns on Terracotta clustering for the cache myCache. -->
 <terracotta />
</cache>

Note the following about the myCache configuration:

Terracotta clients that load myCache will keep up to 1000 elements in heap (

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

26 of 162 2011-06-03 11:26

maxElementsInMemory).
If a client accesses an element in myCache that has been idle for more than an hour (
timeToIdleSeconds), it evicts that element. The element is also evicted from the Terracotta
Server Array.
Elements in myCache can live forever if accessed at least once per 60 minutes (
timeToLiveSeconds). However, unexpired elements may still be flushed based on memory
limitations (maxElementsInMemory).
Cluster-wide, myCache can store a maximum of 10000 elements (maxElementsOnDisk). This is
the effective maximum number elements myCache is allowed on the Terracotta Server Array.

See 2.3.4 How Configuration Affects Element Eviction for more information on how configuration affects
eviction.

2.3.1f Cache Events Configuration

The <cache> subelement <cacheEventListenerFactory>, which registers listeners for cache events such as
puts and updates, has a notification scope controlled by the attribute listenFor . This attribute can have
one of the following values:

local – Listen for events on the local node. No remote events are detected.
remote – Listen for events on other nodes. No local events are detected.
all – (DEFAULT) Listen for events on both the local node and on remote nodes.

In order for cache events to be detected by remote nodes in a Terracotta cluster, event listeners must have a
scope that includes remote events. For example, the following configuration allows listeners of type
MyCacheListener to detect both local and remote events:

<cache name="myCache" maxElementsInMemory="1000"
 maxElementsOnDisk="10000" eternal="false" timeToIdleSeconds="3600"
 timeToLiveSeconds="0" memoryStoreEvictionPolicy="LFU">
 <!-- Not defining the listenFor attribute for <cacheEventListenerFactory> is by default equivalent to
listenFor="all". -->
 <cacheEventListenerFactory class="net.sf.ehcache.event.TerracottaCacheEventReplicationFactory" />
 <terracotta />
</cache>

You must use net.sf.ehcache.event.TerracottaCacheEventReplicationFactory as the
factory class to enable cluster-wide cache-event broadcasts in a Terracotta cluster.

See 2.3.6 Cache Events in a Terracotta Cluster for more information on cache events in a Terracotta cluster.

2.3.1g Incompatible Configuration

For any clustered cache, you must delete, disable, or edit configuration elements in ehcache.xml that
are incompatible when clustering with Terracotta. Clustered caches have a <terracotta /> or <terracotta
clustered="true"> element.

The following Ehcache configuration attributes or elements should be deleted or disabled:

DiskStore-related attributes overflowToDisk and diskPersistent .
The Terracotta server automatically provides a disk store.
Replication-related attributes such as replicateAsynchronously and replicatePuts .
The attribute MemoryStoreEvictionPolicy must be set to either LFU or LRU.
Setting MemoryStoreEvictionPolicy to FIFO causes the error
IllegalArgumentException .

See the Ehcache documentation for more information on the elements in a standard Ehcache configuration
file.

2.3.2 Offloading Large Caches
Storing a distributed cache’s entire key set on each Terracotta client provides high locality-of-reference,
reducing latency at the cost of using more client memory. It also allows for certain cache-management
optimizations on each client that improve the overall performance of the cache. This works well for smaller
key sets which can easily fit into the JVM.

However, for caches with elements numbering in the millions or greater, performance begins to deteriorate
when every client must store the entire key set. Clusters with a large number of clients require even more
overhead to manage those key sets. If the cache is also heavy on writes, that overhead can cause a
considerable performance bottleneck.

In addition to making it more difficult to scale a cluster, larger caches can cause other serious performance

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

27 of 162 2011-06-03 11:26

issues:

Cache-loading slowdown – The cache’s entire key set must be fully present in the client before the
cache is available.
Reduction in free client memory – Less available memory may cause more flushing and faulting.
More garbage collection – Larger heaps (to accommodate larger key sets) and more objects in memory
means more garbage created and more Java garbage collection cycles.

The DCV2 mode of managing Terracotta clustered caches avoids these issues by offloading cache entries to
the Terracotta server array, allowing clients to fault in only required keys. Some of the advantages of the
DCV2, which is used by default, include server-side eviction, automatic and flexible hot-set caching by
clients, and cluster-wide consistency without cluster-wide delta broadcasts.

Note the following about the DCV2 mode:

Under certain circumstances, unexpired elements evicted from Terracotta clients to meet the limit set
by maxElementsInMemory or to free up memory may also be evicted from the Terracotta server
array. The client cannot fault such elements back from the server.
See 2.3.4 How Configuration Affects Element Eviction for more information on how DCV2, element
expiration, and element eviction are related.
UnlockeReadsView and bulk-load mode is not optimized for DCV2 with strong consistency.
Elements populated through bulk load expire according to a set timeout and may persist in the cache
even after being evicted by the server array (see 2.3.4 How Configuration Affects Element Eviction for
more information). You can bypass this issue by using "eventual" consistency mode (see 2.3.5
Understanding Performance and Cache Consistency for more information).
The entire cache’s key set must fit into the server array’s aggregate heap.
The server array’s aggregate heap is equal to the sum of each active server’s heap size. BigMemory
allows you to bypass this restriction. See 6.4 Improving Server Performance With BigMemory for more
information.

Very large key sets can be offloaded effectively to a scaled-up Terracotta server array with a sufficient
number of mirror groups. See Scaling the Terracotta Server Array for more information on mirror groups.

To configure a cache to not offload its key set, set the attribute storageStrategy="classic" in that
cache’s <terracotta> element.

2.3.2a Tuning Concurrency

The server map underlying the Terracotta Server Array contains the data used by clients in the cluster and is
segmented to improve performance through added concurrency. The concurrency attribute in the
<terracotta> element controls this segmentation.

With large data sets, a high concurrency value can improve performance by hashing the data into the
segments, which reduces lock contention.

However, the default concurrency value may not be efficient for certain environments, such as those with
very few cache elements or a low maxElementsOnDisk value. In this case, the default concurrency value of
2048 creates 2048 segments on the Terracotta Server Array, with each segment holding a few (or even one)
element. maxElementsOnDisk may appear to have been exceeded, and the cluster may run low on memory
as it loads all segments into RAM, even if they are nearly empty.

To set concurrency to an optimum value, follow these guidelines:

If maxElementsOnDisk is not set, set to 0, or set to a value equal to or greater than 256, set
concurrency equal to 256.
If maxElementsOnDisk is set to a value less than than 256, set concurrency to the highest power of 2
that is less than or equal to the value of maxElementsOnDisk.
For example, if maxElementsOnDisk is 130, set concurrency to 128.

To learn how to set concurrency for a cache, see the section on the <terracotta> element.

2.3.3 Non-Blocking Disconnected (Nonstop) Cache
A nonstop cache allows certain cache operations to proceed on clients that have become disconnected from
the cluster. Clients go into nonstop mode if they receive a "cluster offline" event or if a cache operation
cannot complete by the nonstop timeout value.

2.3.3a Configuring Nonstop

Nonstop is configured in a <cache> block under the <terracotta> subelement. In the following example,
myCache has nonstop configuration:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

28 of 162 2011-06-03 11:26

exception
(DEFAULT) Throw NonStopCacheException .
See When is NonStopCacheException Thrown? for
more information on this exception.

noop

Return null for gets. Ignore all other cache
operations. Hibernate users may want to use this
option to allow their application to continue with
an alternative data source.

localReads

For caches with Terracotta clustering, allow
inconsistent reads of cache data. Ignore all other
cache operations. For caches without Terracotta
clustering, throw an exception.

<cache name="myCache" maxElementsInMemory="10000" eternal="false"
 overflowToDisk="false">
 <terracotta>
 <nonstop immediateTimeout="false" timeoutMillis="30000">
 <timeoutBehavior type="noop" />
 </nonstop>
 </terracotta>
</cache>

Nonstop is enabled by default or if <nonstop> appears in a cache’s <terracotta> block.

2.3.3b Nonstop Timeouts and Behaviors

Nonstop caches can be configured with the following attributes:

enabled – Enables ("true" DEFAULT) or disables ("false") the ability of a cache to execute certain actions
after a Terracotta client disconnects. This attribute is optional for enabling nonstop.
immediateTimeout – Enables ("true") or disables ("false" DEFAULT) an immediate timeout response if
the Terracotta client detects a network interruption (the node is disconnected from the cluster). If
enabled, this parameter overrides timeoutMillis , so that the option set in timeoutBehavior
is in effect immediately.
timeoutMillis – Specifies the number of milliseconds an application waits for any cache operation to
return before timing out. The default value is 30000 (thirty seconds). The behavior after the timeout
occurs is determined by timeoutBehavior .

<nonstop> has one self-closing subelement, <timeoutBehavior>. This subelement determines the response
after a timeout occurs (timeoutMillis expires or an immediate timeout occurs). The response can be
set by the <timeoutBehavior> attribute type . This attribute can have one of the values listed in the
following table:

Value Behavior

Tuning Nonstop Timeouts and Behaviors

You can tune the default timeout values and behaviors of nonstop caches to fit your environment. For
example, in an environment with regular network interruptions, consider disabling immediateTimeout
and increasing timeoutMillis to prevent timeouts for most of the interruptions.

For a cluster that experiences regular but short network interruptions, and in which caches clustered with
Terracotta carry read-mostly data or there is tolerance of potentially stale data, you may want to set
timeoutBehavior to localReads .

In an environment where cache operations can be slow to return and data is required to always be in sync,
increase timeoutMillis to prevent frequent timeouts. Set timeoutBehavior to noop to force the
application to get data from another source or exception if the application should stop.

If a nonstop cache is bulk-loaded using the Bulk-Load API, a multiplier is applied to the configured nonstop
timeout whenever the method
net.sf.ehcache.Ehcache.setNodeBulkLoadEnabled(boolean) is used. The default value of
the multiplier is 10. You can tune the multiplier using the bulkOpsTimeoutMultiplyFactor system
property:

-DbulkOpsTimeoutMultiplyFactor=10

This multiplier also affects the methods net.sf.ehcache.Ehcache.removeAll() ,
net.sf.ehcache.Ehcache.removeAll(boolean) , and

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

29 of 162 2011-06-03 11:26

net.sf.ehcache.Ehcache.setNodeCoherent(boolean) (DEPRECATED).

When is NonStopCacheException Thrown?

NonStopCacheException is usually thrown when it is the configured behavior for a nonstop cache in a client
that disconnects from the cluster. In the following example, the exception would be thrown 30 seconds after
the disconnection (or the "cluster offline" event is received):

<nonstop immediateTimeout="false" timeoutMillis="30000">
 <timeoutBehavior type="exception" />
</nonstop>

However, under certain circumstances the NonStopCache exception can be thrown even if a nonstop cache’s
timeout behavior is not set to throw the exception. This can happen when the cache goes into nonstop mode
during an attempt to acquire or release a lock. These lock operations are associated with certain lock APIs
and special cache types such as Explicit Locking, BlockingCache, SelfPopulatingCache, and
UpdatingSelfPopulatingCache.

A NonStopCacheException can also be thrown if the cache must fault in an element to satisfy a get()
operation. If the Terracotta Server Array cannot respond within the configured nonstop timeout, the
exception is thrown.

A related exception, InvalidLockAfterRejoinException, can be thrown during or after client rejoin (see 2.3.7a
Using Rejoin to Automatically Reconnect Terracotta Clients). This exception occurs when an unlock operation
takes place on a lock obtained before the rejoin attempt completed.

TIP: Use try-finally Blocks

To ensure that locks are released properly, application code using Ehcache lock APIs should encapsulate
lock-unlock operations with try-finally blocks:
myLock.acquireLock();
try {
 // Do some work.
} finally {
 myLock.unlock();
}

2.3.4 How Configuration Affects Element Eviction
Element eviction is a crucial part of keeping cluster resources operating efficiently. Element eviction and
expiration are related, but an expired element is not necessarily evicted immediately and an evicted
element is not necessarily an expired element. Cache elements may be evicted due to resource and
configuration constraints, while expired elements are evicted from the Terracotta client when a get or put
operation occurs on that element (sometimes called inline eviction).

If the cache’s storageStrategy is set to "classic", then clients contain all of a cache’s keys; once an
element is expired, it can be evicted from any client and the Terracotta server array. In this case, eviction is
a function of constraints on the client.

By default, the cache’s storageStrategy is set to "DCV2". In this case, the Terracotta server array
contains the full key set (as well as all values), while clients contain a subset of keys and values based on
elements they’ve faulted in from the server array. The rest of this discussion assumes that the storage
storageStrategy is set to DCV2.

TIP: Eviction Under DCV2 With UnlockedReadsView and Bulk Loading

Under certain circumstances, DCV2 caches may evict elements based on a configured timeout. See 2.3.4a
DCV2, Strict Consistency, UnlockedReadsView, and Bulk Loading for more information.

Typically, an expired cache element is evicted from a client when a get() or put() operation occurs on
that element. However, a client may also evict expired, and then unexpired elements, whenever a cache’s
maxElementsInMemory is reached or it is under memory pressure. This type of eviction is intended to
meet configured and real memory constraints.

Eviction from clients does not mean eviction from the server array. Elements can become candidates for
eviction from the server array when disks run low on space. Servers with a disk-store limitation set by
maxElementsOnDisk can come under disk-space pressure and will evict expired elements first. However,
unexpired elements can also be evicted if they meet the following criteria:

They are in a cache with infinite TTI/TTL (Time To Idle and Time To Live), or no explicit settings for
TTI/TTL.
Enabling a cache’s eternal flag overrides any finite TTI/TTL values that have been set.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

30 of 162 2011-06-03 11:26

They are not resident on any Terracotta client.
These elements can be said to have been "orphaned". Once evicted, they will have to be faulted back
in from a system of record if requested by a client.
Their per-element TTI/TTL settings indicate that they’ve expired and the server array is inspecting
per-element TTI/TTL.
Note that per-element TTI/TTL settings are, by default, not inspected by Terracotta servers.

TIP: Forcing Terracotta Servers to Inspect Per-Element TTI/TTL

To help maintain a high level of performance, per-element TTI/TTL settings are not inspected by
Terracotta servers. To force servers to inspect and honor per-element TTI/TTL settings, enable the
Terracotta property ehcache.storageStrategy.dcv2.perElementTTITTL.enabled by
adding the following configuration to the top of the Terracotta configuration file (
tc-config.xml by default) before starting the Terracotta server:
<tc-properties>
 <property name="ehcache.storageStrategy.dcv2.perElementTTITTL.enabled" value="true" />
</tc-properties>

While this setting may prevent unexpired elements (based on per-element TTI/TTL) from being
evicted, it also degrades performance by incurring processing costs.

A server array will not evict unexpired elements if servers are configured to have infinite store (
maxElementsOnDisk is not set or is set to 0). Under these conditions, the expected data set must fit in
the server array or the cluster may suffer from performance degradation and errors.

2.3.4a DCV2, Strict Consistency, UnlockedReadsView, and Bulk Loading

When a cache that uses the DCV2 storage strategy and strict consistency is decorated with
UnlockedReadsView (see 2.2.4 Unlocked Reads for Consistent Caches (UnlockedReadsView)), unlocked reads
may cause elements to be faulted in. These elements expire based on a cluster-wide timeout controlled by
the Terracotta property
ehcache.storageStrategy.dcv2.localcache.incoherentReadTimeout . This timeout,
which by default is set to five minutes, can be tuned in the Terracotta configuration file (
tc-config.xml):

<tc-properties>
<!-- The following timeout is set in milliseconds. -->
 <property name="ehcache.storageStrategy.dcv2.localcache.incoherentReadTimeout" value="300000" />
</tc-properties>

If the same elements are changed on a remote node, the local elements under the effect of this timeout will
not expire or become invalid until the timeout is reached.

This timeout also applies to elements that are put into the cache using the bulk-load API (see 2.2.3
Bulk-Load API).

2.3.5 Understanding Performance and Cache Consistency
Cache consistency modes are configuration settings and API methods that control the behavior of clustered
caches with respect to balancing data consistency and application performance. A cache can be in one of the
following consistency modes:

Strong – This mode ensures that data in the cache remains consistent across the cluster at all times. It
can guarantee that a read gets an updated value only after all write operations to that value are
completed. The use of locking and transaction acknowledgments maximizes consistency at the cost of
performance.
This mode is set using the Ehcache configuration file and cannot be changed programmatically (see
the attribute "consistent" in <terracotta>).
Eventual – This mode guarantees that data in the cache will eventually be consistent across the
cluster. Read/write performance is boosted at the cost of potentially having an inconsistent cache for
short periods of time. This mode is set using the Ehcache configuration file and cannot be changed
programmatically (see the attribute "consistency" in <terracotta>).
Bulk Load – This mode is optimized for bulk-loading data into the cache without the slowness
introduced by locks or regular eviction. It is similar to the eventual mode, but has batching, higher
write speeds, and weaker consistency guarantees. This mode is set using the bulk-load API only (see
2.2.3 Bulk-Load API). When turned off, allows the configured consistency mode (either strong or
eventual) to take effect again.

Use configuration to set the permanent consistency mode for a cache as required for your application, and
the bulk-load mode only during the time when populating (warming) or refreshing the cache.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

31 of 162 2011-06-03 11:26

The following APIs and settings also affect consistency:

Explicit Locking – This API provides methods for locking specific elements in a cache. There is
guaranteed consistency across the cluster at all times for operations on elements covered by a lock.
While explicit locking of elements provides fine-grained locking, there is still the potential for
contention, blocked threads, and increased performance overhead from managing clustered locks. See
2.2.5 Explicit Locking for more information.
UnlockedReadsView – A cache decorator that allows dirty reads of the cache. This decorator can be
used only with caches in the strong consistency mode. UnlockedReadsView raises performance for this
mode by bypassing the requirement for a read lock. See 2.2.4 Unlocked Reads for Consistent Caches
(UnlockedReadsView) for more information.
Atomic methods – You can guarantee write consistency at all times, avoiding potential race conditions
for put operations, by using the following atomic methods Cache.putIfAbsent(Element
element) and Cache.replace(Element oldOne, Element newOne) . However, there is
no guarantee that these methods’ return value is not stale because another operation may change the
element after the atomic method completes but before the return value is read. To guarantee the
return value, use locks (see 2.2.5 Explicit Locking). Note that using locks may impact performance.

2.3.6 Cache Events in a Terracotta Cluster
Cache events are fired for certain cache operations:

Evictions – An eviction on a client generates an eviction event on that client. An eviction on a
Terracotta server fires an event on a random client.
Puts – A put() on a client generates a put event on that client.
Updates – If a cache uses default storage strategy (<terracotta ... storageStrategy="DCV2" ... >), then
an update on a client generates a put event on that client.
orphan eviction – An orphan is an element that exists only on the Terracotta Server Array. If an orphan
is evicted, an eviction event is fired on a random client.

See 2.3.1f Cache Events Configuration for more information on configuring the scope of cache events.

2.3.6a Handling Cache Update Events With DCV2

Caches that use the DCV2 storage strategy will generate put events whenever elements are put or updated. If
it is important for your application to distinguish between puts and updates, check for the existence of the
element during put() operations:

if (cache.containsKey(key)) {
 cache.put(element);
 // Action in the event handler on replace.
} else {
 cache.put(element);
 // Action in the event handler on new puts.
}

To protect against races, wrap the if block with explicit locks (see 2.2.5 Explicit Locking). You can also use
the atomic cache methods putIfAbsent() or to check for the existence of an element:

if((olde = cache.putIfAbsent(element)) == null) { // Returns null if successful or returns the existing
(old) element.
 // Action in the event handler on new puts.
} else {
 cache.replace(old, newElement); // Returns true if successful.
 // Action in the event handler on replace.
}

If your code cannot use these approaches (or a similar workaround), you can force update events for cache
updates by setting the Terracotta property ehcache.clusteredStore.checkContainsKeyOnPut
at the top of the Terracotta configuration file (tc-config.xml by default) before starting the
Terracotta Server Array:

<tc-properties>
 <property name="ehcache.clusteredStore.checkContainsKeyOnPut" value="true" />
</tc-properties>

Enabling this property can substantially degrade performance.

2.3.7 Configuring Caches for High Availability
Enterprise Ehcache caches provide the following High Availability (HA) settings:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

32 of 162 2011-06-03 11:26

Non-blocking cache – Also called nonstop cache. When enabled, this attribute gives the cache the
ability to take a configurable action after the Terracotta client receives a cluster-offline event. See
2.3.3 Non-Blocking Disconnected (Nonstop) Cache for more information.
Rejoin – The rejoin attribute allows a Terracotta client to reconnect to the cluster after it receives a
cluster-online event. See 2.3.7a Using Rejoin to Automatically Reconnect Terracotta Clients for more
information.

To learn about configuring HA in a Terracotta cluster, see 6.2 Configuring Terracotta Clusters For High
Availability.

2.3.7a Using Rejoin to Automatically Reconnect Terracotta Clients

A Terracotta client running Enterprise Ehcache may disconnect and be timed out (ejected) from the cluster.
Typically, this occurs because of network communication interruptions lasting longer than the configured HA
settings for the cluster. Other causes include long GC pauses and slowdowns introduced by other processes
running on the client hardware.

You can configure clients to automatically rejoin a cluster after they are ejected. If the ejected client
continues to run under nonstop cache settings, and then senses that it has reconnected to the cluster
(receives a clusterOnline event), it can begin the rejoin process.

Note the following about using the rejoin feature:

Rejoin is for CacheManagers with only nonstop caches. If one or more of a CacheManager’s caches is
not set to be nonstop, and rejoin is enabled, an exception is thrown at initialization. An exception is
also thrown in this case if a cache is created programmatically without nonstop.
Clients rejoin as new members and will wipe all cached data to ensure that no pauses or
inconsistencies are introduced into the cluster.
Any nonstop-related operations that begin (and do not complete) before the rejoin operation
completes may be unsuccessful and may generate a NonStopCacheException.
Enterprise Ehcache with rejoin enabled should not share a Terracotta client or a JVM with products
that do not support rejoin. For example, if Enterprise Ehcache is running with Terracotta Quartz
Scheduler in a single Terracotta client, and a rejoin occurs, a second client running only Ehcache will
be spawned to share the JVM with the original client. To ensure that rejoin succeeds, run Ehcache in
its own JVM.
Once a client rejoins, the clusterRejoined event is fired on that client only.

Configuring Rejoin

The rejoin feature is disabled by default. To enable the rejoin feature in an Enterprise Ehcache client,
follow these steps:

1. Ensure that all of the caches in the Ehcache configuration file where rejoin is enabled have nonstop
enabled.

2. Ensure that your application does not create caches on the client without nonstop enabled.
3. Enable the rejoin attribute in the client’s <terracottaConfig> element:

<terracottaConfig url="myHost:9510" rejoin="true" />

Avoiding OOME From Multiple Rejoins

Each time a client rejoins a cluster, it reloads all class definitions into the heap’s Permanent Generation
(PermGen) space. If a number of rejoins happen before Java garbage collection (GC) is able to free up
enough PermGen, an OutOfMemory error (OOME) can occur. PermGen holds other data, as well, and
allocating too large of a PermGen space can make an OOME more likely under these conditions.

The default value of PermGen on Oracle Sun JVM is 64MB. You can tune this value using the Java options
-XX:PermSize (starting value) and -XX:MaxPermSize (maximum allowed value). For example:

-XX:PermSize=<value>m -XX:MaxPermSize=<value>m

If your cluster experiences regular node disconnections that trigger many rejoins, and OOMEs are occurring,
investigate your application’s usage of the PermGen space and how well GC is keeping up with reclaiming
that space. Then test lower and higher values for PermGen with the aim of eliminating the OOMEs.

Exception During Rejoin

Under certain circumstances, if one of the Ehcache locking APIs is being used by your application, an
InvalidLockAfterRejoinException could be thrown. See When is NonStopCacheException Thrown? for more
information.

2.3.8 Working With Transactional Caches

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

33 of 162 2011-06-03 11:26

Transactional caches add a level of safety to cached data and ensure that the cached data and external data
stores are in sync. Enterprise Ehcache caches can participate in Java Transaction API (JTA) transactions as a
fully compliant XA resource. This is useful in JTA applications requiring caching, or where cached data is
critical and must be persisted and remain consistent with System of Record data.

However, transactional caches are slower than non-transactional caches due to the overhead from having to
write transactionally. Transactional caches also have the following restrictions:

Data can be accessed only transactionally, even for read-only purposes.
You must encapsulate data access with begin() and commit() statements.
copyOnRead and copyOnWrite must be enabled.
These <cache> attributes are "false" by default and must set to "true".
Caches must be strongly consistent.
A transactional cache’s consistency attribute must be set to "strong".
Nonstop caches cannot be made transactional.
Transactional caches must not contain the <nonstop> subelement.
Decorating a transactional cache with UnlockedReadsView can return inconsistent results for data
obtained through UnlockedReadsView.
Puts, and gets not through UnlockedReadsView, are not affected.
Objects stored in a transactional cache must override equals() and hashCode() .
If overriding equals() and hashCode() is not possible, see 2.3.8e Implementing an Element
Comparator.

You can choose one of three different modes for transactional caches:

Strict XA – Has full JTA support for XA transactions. May not be compatible with transaction managers
that do not fully support JTA.
XA – Has support for the most common JTA components, so likely to be compatible with most
transaction managers. But unlike strict XA, may fall out of sync with a database after a failure (has no
recovery). Integrity of cache data, however, is preserved.
Local – Local transactions written to a local store and likely to be faster than the other transaction
modes. This mode does not require a transaction manager and does not synchronize with remote data
sources. Integrity of cache data is preserved in case of failure.

NOTE: Deadlocks

Both the XA and local mode write to the underlying store synchronously and using pessimistic locking.
Under certain circumstances, this can result in a deadlock, which generates a DeadLockException
after a transaction times out and a commit fails. Your application should catch DeadLockException
(or TransactionException) and call rollback() .

Deadlocks can have a severe impact on performance. A high number of deadlocks indicates a need to
refactor application code to prevent races between concurrent threads attempting to update the
same data.

These modes are explained in the following sections.

2.3.8a Strict XA (Full JTA Support)

Note that Ehcache as an XA resource:

Has an isolation level of ReadCommitted.
Updates the underlying store asynchronously, potentially creating update conflicts.
With this optimistic locking approach, Ehcache may force the transaction manager to roll back the
entire transaction if a commit() generates a RollbackException (indicating a conflict).
Can work alongside other resources such as JDBC or JMS resources.
Guarantees that its data is always synchronized with other XA resources.
Can be configured on a per-cache basis (transactional and non-transactional caches can exist in the
same configuration).
Automatically performs enlistment.
Can be used standalone or integrated with frameworks such as Hibernate.
Is tested with the most common transaction managers by Atomikos, Bitronix, JBoss, WebLogic, and
others.

For more information on working with transactional caches in Enterprise Ehcache for Hibernate, see Setting
Up Transactional Caches.

Configuration

To configure Enterprise Ehcache as an XA resource able to participate in JTA transactions, the following

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

34 of 162 2011-06-03 11:26

<cache> attributes must be set as shown:

transactionalMode="xa_strict"
copyOnRead="true"
copyOnWrite="true"

In addition, the <cache> subelement <terracotta> must have the following attributes set as shown:

valueMode="serialization"
clustered="true"

For example, the following cache is configured for JTA transactions with strict XA:

<cache name="com.my.package.Foo"
 maxElementsInMemory="500"
 eternal="false"
 overflowToDisk="false"
 copyOnRead="true"
 copyOnWrite="true"
 consistency="strong"
 transactionalMode="xa_strict">
 <terracotta clustered="true" valueMode="serialization" />
</cache>

Any other XA resource that could be involved in the transaction, such as a database, must also be configured
to be XA compliant.

Usage

Your application can directly use a transactional cache in transactions. This usage must occur after the
transaction manager has been set to start a new transaction and before it has ended the transaction.

For example:

...
myTransactionMan.begin();
Cache fooCache = cacheManager.getCache("Foo");
fooCache.put("1", "Bar");
myTransactionMan.commit();
...

If more than one transaction writes to a cache, it is possible for an XA transaction to fail. See 2.3.8d
Avoiding XA Commit Failures With Atomic Methods for more information.

2.3.8b XA (Basic JTA Compliance)

Transactional caches set to "xa" provide support for basic JTA operations. Configuring and using XA does not
differ from using local transactions (see 2.3.8c Local Transactions), except that "xa" mode requires a
transaction manager and allows the cache to participate in JTA transactions.

NOTE: Atomikos Transaction Manager

When using XA with an Atomikos transaction Manager, be sure to set
com.atomikos.icatch.threaded_2pc=false in the Atomikos configuration. This helps prevent
unintended rollbacks due to a bug in the way Atomikos behaves under certain conditions.

For example, the following cache is configured for JTA transactions with XA:

<cache name="com.my.package.Foo"
 maxElementsInMemory="500"
 eternal="false"
 overflowToDisk="false"
 copyOnRead="true"
 copyOnWrite="true"
 consistency="strong"
 transactionalMode="xa">
 <terracotta clustered="true" valueMode="serialization" />
</cache>

Any other XA resource that could be involved in the transaction, such as a database, must also be configured
to be XA compliant.

2.3.8c Local Transactions

Local transactional caches (with the transactionalMode attribute set to "local") write to a local store
using an API that is part of the Enterprise Ehcache core application. Local transactions have the following

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

35 of 162 2011-06-03 11:26

characteristics:

Recovery occurs at the time an element is accessed.
Updates are written to the underlying store immediately.
Get operations on the underlying store may block during commit operations.

To use local transactions, instantiate a TransactionController instance instead of a transaction manager
instance:

TransactionController txCtrl = myCacheManager.getTransactionController();
...
txCtrl.begin();
Cache fooCache = cacheManager.getCache("Foo");
fooCache.put("1", "Bar");
txCtrl.commit();
...

You can use rollback() to roll back the transaction bound to the current thread.

TIP: Finding the Status of a Transaction on the Current Thread

You can find out if a transaction is in process on the current thread by calling

TransactionController.getCurrentTransactionContext() and checking its return value. If
the value isn't null, a transaction has started on the current thread.

Commit Failures and Timeouts

Commit operations can fail if the transaction times out. If the default timeout requires tuning, you can get
and set its current value:

int currentDefaultTransactionTimeout = txCtrl.getDefaultTransactionTimeout();
...
txCtrl.setDefaultTransactionTimeout(30); // in seconds -- must be greater than zero.

You can also bypass the commit timeout using the following version of commit() :

txCtrl.commit(true); // "true" forces the commit to ignore the timeout.

2.3.8d Avoiding XA Commit Failures With Atomic Methods

If more than one transaction writes to a cache, it is possible for an XA transaction to fail. In the following
example, if a second transaction writes to the same key ("1") and completes its commit first, the commit in
the example may fail:

...
myTransactionMan.begin();
Cache fooCache = cacheManager.getCache("Foo");
fooCache.put("1", "Bar");
myTransactionMan.commit();
...

One approach to prevent this type of commit failure is to use one of the atomic put methods, such as
Cache.replace() :

myTransactionMan.begin();
int val = cache.get(key).getValue(); // "cache" is configured to be transactional.
Element olde = new Element (key, val);
if (cache.replace(olde, new Element(key, val + 1)) { // True only if the element was successfully
replaced.
 myTransactionMan.commit();
}
else { myTransactionMan.rollback(); }

Another useful atomic put method is Cache.putIfAbsent(Element element) , which returns null
on success (no previous element exists with the new element’s key) or returns the existing element (the put
is not executed). Atomic methods cannot be used with null elements, or elements with null keys.

2.3.8e Implementing an Element Comparator

For all transactional caches, the atomic methods Cache.removeElement(Element element) and
Cache.replace(Element old, Element element) must compare elements for the atomic
operation to complete. This requires all objects stored in the cache to override equals() and
hashCode() .

If overriding these methods is not desirable for your application, a default comparator is used (

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

36 of 162 2011-06-03 11:26

net.sf.echache.store.DefaultElementValueComparator). You can also implement a custom
comparator and specify it in the cache configuration with <elementValueComparator>:

<cache name="com.my.package.Foo"
 maxElementsInMemory="500"
 eternal="false"
 overflowToDisk="false"
 copyOnRead="true"
 copyOnWrite="true"
 consistency="strong"
 transactionalMode="xa">
 <elementValueComparator class="com.company.xyz.MyElementComparator" />
 <terracotta clustered="true" valueMode="serialization" />
</cache>

Custom comparators must implement net.sf.ehcache.store.ElementValueComparator .

A comparator can also be specified programmatically.

2.3.9 Working With OSGi
To allow Enterprise Ehcache to behave as an OSGi component, the following attributes should be set as
shown:

<cache ... copyOnRead="true" ... >
...
 <terracotta ... clustered="true" valueMode="serialization" ... />
...
</cache>

3 Enterprise Ehcache for Hibernate

Enterprise Ehcache for Hibernate provides a flexible and powerful second-level cache solution for boosting
the performance of Hibernate applications.

This document has the following sections:

Enterprise Ehcache for Hibernate Express Installation
Begin with this simple installation procedure.
Testing and Tuning Enterprise Ehcache for Hibernate
Use this document to locate trouble spots find ideas for improving performance.
Enterprise Ehcache for Hibernate Reference
Covers configuration and other topics.

3.1 Enterprise Ehcache for Hibernate Express Installation

3.1.1 Step 1: Requirements

JDK 1.5 or greater
Hibernate 3.2.5, 3.2.6, 3.2.7, 3.3.1, or 3.3.2
Use the same version of Hibernate throughout the cluster. Sharing of Hibernate regions between
different versions of Hibernate versions is not supported.
Terracotta 3.5.0 package

3.1.2 Step 2: Install and Update the JAR files
For guaranteed compatibility, use the JAR files included with the Terracotta kit you are installing. Mixing
with older components may cause errors or unexpected behavior.

To install the distributed cache in your application, add the following JAR files to your application's
classpath:

${TERRACOTTA_HOME}/ehcache/lib/ehcache-terracotta-ee-<version>.jar
<version> is the current version of the Ehcache-Terracotta JAR.
${TERRACOTTA_HOME}/ehcache/lib/ehcache-core-ee-<ehcache-version>.jar
The Ehcache core libraries, where <ehcache-version> is the current version of Ehcache (2.4.1 or
higher).
${TERRACOTTA_HOME}/ehcache/lib/slf4j-<slf4j-version>.jar

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

37 of 162 2011-06-03 11:26

The SLF4J logging facade allows Ehcache to bind to any supported logger used by your application.
Binding JARs for popular logging options are available from the SLF4J project . For convenience, the
binding JAR for java.util.logging is provided in ${TERRACOTTA_HOME}/ehcache (see
below).
${TERRACOTTA_HOME}/ehcache/lib/slf4j-jdk14-<slf4j-version>.jar
An SLF4J binding JAR for use with the standard java.util.logging , also known as JDK 1.4
logging.
${TERRACOTTA_HOME}/common/terracotta-toolkit-<API-version>-runtime-
ee-<version>.jar
The Terracotta Toolkit JAR contains the Terracotta client libraries. <API-version> refers to the
Terracotta Toolkit API version. <version> is the current version of the Terracotta Toolkit JAR.

If you are using the open-source edition of the Terracotta kit, no JAR files will have "-ee-" as part of their
name.

If you are using a WAR file, add these JAR files to the WEB-INF/lib directory.

NOTE: Application Servers

Most application servers (or web containers) should work with this installation of the Terracotta Distributed
Cache. However, note the following:

- GlassFish – You must add the following to domains.xml :

<jvm-options>-Dcom.sun.enterprise.server.ss.ASQuickStartup=false</jvm-
options>

- WebLogic – You must use the supported version of WebLogic. If using version 10.3, you must remove the
xml-apis from WEB-INF/lib and add the following to WEB-INF/weblogic.xml :
<weblogic-web-app>
 <container-descriptor>
 <prefer-web-inf-classes>true</prefer-web-inf-classes>
 </container-descriptor>
</weblogic-web-app>

- JBoss 5.x – PermGen memory must be at least 128MB and can be set using the switch
-XX:MaxPermSize=128m .

3.1.3 Step 3: Prepare Your Application for Caching
Hibernate entities that should be cached must be marked in one of the following ways:

Using the @Cache annotation.
Using the <cache> element of a class or collection mapping file (hbm.xml file).
Using the <class-cache> (or <collection-cache>) element in the Hibernate XML configuration file (
hibernate.cfg.xml by default).

For more information on configuring Hibernate, including configuring collections for caching, see the
Hibernate documentation .

In addition, you must specify a concurrency strategy for each cached entity. The following cache concurrency
strategies are supported:

READ_ONLY
READ_WRITE
NONSTRICT_READ_WRITE
TRANSACTIONAL
Transactional caches are supported with Echache 2.0 or later. See Setting Up Transactional Caches for
more information on configuring a transactional cache.

See Cache Concurrency Strategies for more information on selecting a cache concurrency strategy.

3.1.3a Using @Cache

Add the @Cache annotation to all entities in your application code that should be cached:

@Cache(usage=CacheConcurrencyStrategy.READ_WRITE)
public class Foo {...}

@Cache must set the cache concurrency strategy for the entity, which in the example above is READ_WRITE.

3.1.3b Using the <cache> Element

In the Hibernate mapping file (hbm.xml file) for the target entity, set caching for the entity using the

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

38 of 162 2011-06-03 11:26

<cache> element:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
 "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="com.my.package">
 <class name="Foo" table="BAR">
 <cache usage="read-write"/>
 <id name="id" column="BAR_ID">
 <generator class="native"/>
 </id>
 <!-- Some properties go here. -->
 </class>
</hibernate-mapping>

Use the usage attribute to specify the concurrency strategy.

3.1.3c Using the <class-cache> Element

In hibernate.cfg.xml , set caching for an entity by using <class-cache>, a subelement of the <session-
factory> element:

<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
 "-//Hibernate/Hibernate Configuration DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory name="java:some/name">
 <!-- Properties go here. -->

 <!-- mapping files -->
 <mapping resource="com/my/package/Foo.hbm.xml"/>

 <!-- cache settings -->
 <class-cache class="com.my.package.Foo" usage="read-write"/>
 </session-factory>
</hibernate-configuration>

Use the usage attribute to specify the concurrency strategy.

3.1.4 Step 4: Edit Configuration Files
You must edit the Hibernate configuration file to enable and specify the second-level cache provider. You
must also edit the Enterprise Ehcache for Hibernate configuration file to configure caching for the Hibernate
entities that will be cached and to enable Terracotta clustering.

3.1.4a Hibernate Configuration File

For Hibernate 3.3, you can improve performance by substituting a factory class for the provider class used in
previous versions of Hibernate. Add the following to your hibernate.cfg.xml file:

<property name="hibernate.cache.use_second_level_cache">true</property>
<property
name="hibernate.cache.region.factory_class">net.sf.ehcache.hibernate.EhCacheRegionFactory</property>

For Hibernate 3.2, which cannot use the factory class, add the following to your hibernate.cfg.xml
file:

<property name="hibernate.cache.use_second_level_cache">true</property>
<property name="hibernate.cache.provider_class">net.sf.ehcache.hibernate.EhCacheProvider</property>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

39 of 162 2011-06-03 11:26

TIP: Singletons

To use a singleton version of the provider or factory class, substitute
net.sf.ehcache.hibernate.SingletonEhCacheProvider or
net.sf.ehcache.hibernate.SingletonEhCacheRegionFactory .

Singleton CacheManagers are simpler to access and use, and can be helpful in less complex setups where
only one configuration is required. Note that a singleton CacheManager should not be used in setups
requiring mutliple configuration resources or involving multiple instances of Hibernate.

TIP: Spring Users

If you are configuring Hibernate using a Spring context file, you can enable and set the second-level cache
provider using values in the hibernateProperties property in the bean definition for the session
factory:
 <bean id="mySessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="dataSource" ref="myDataSource"/>
 </property>
<!-- Other properties, such as "mappingResources" listing Hibernate mapping files. -->
 <property name="hibernateProperties">
 <value>
 hibernate.cache.use_second_level_cache=true
hibernate.cache.region.factory_class=
 net.sf.ehcache.hibernate.EhCacheRegionFactory
<!-- Other values, such as hibernate.dialect. -->
 </value>
 </property>
 </bean>

3.1.4b Enterprise Ehcache Configuration File

Create a basic Ehcache configuration file, ehcache.xml by default:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache name="Foo"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd">
 <defaultCache
 maxElementsInMemory="0"
 eternal="false"
 timeToIdleSeconds="1200"
 timeToLiveSeconds="1200">
 <terracotta />
 </defaultCache>
 <terracottaConfig url="localhost:9510" />
</ehcache>

This defaultCache configuration includes Terracotta clustering. The Terracotta client must load the
configuration from a file or a Terracotta server. The value of the <terracottaConfig /> element’s url
attribute should contain a path to the file or the address and DSO port (9510 by default) of a server. In the
example value, "localhost:9510" means that the Terracotta server is on the local host. If the Terracotta
configuration source changes at a later time, it must be updated in configuration.

TIP: Terracotta Clients and Servers

In a Terracotta cluster, the application server is also known as the client.

ehcache.xml must be on your application's classpath. If you are using a WAR file, add the Ehcache
configuration file to WEB-INF/classes or to a JAR file that is included in WEB-INF/lib .

Specifying Caches for Hibernate Entities

Using an Ehcache configuration file with only a defaultCache configuration means that every cached
Hibernate entity is cached with the settings of that defaultCache. You can create specific cache
configurations for Hibernate entities using <cache> elements.

For example, add the following <cache> block to ehcache.xml to cache a Hibernate entity that has been
configured for caching (see Step 3: Prepare Your Application for Caching):

<cache name="com.my.package.Foo" maxElementsInMemory="1000"
 maxElementsOnDisk="10000" eternal="false" timeToIdleSeconds="3600"

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

40 of 162 2011-06-03 11:26

 timeToLiveSeconds="0" memoryStoreEvictionPolicy="LFU">
 <!-- Adding the element <terracotta /> turns on Terracotta clustering for the cache Foo. -->
 <terracotta />
</cache>

Eviction Settings

You can edit the eviction settings in the defaultCache and any other caches that you configure in
ehcache.xml to better fit your application’s requirements. See Eviction Parameters for more information.

3.1.5 Step 5: Start Your Application with the Cache
You must start both your application and a Terracotta server.

1. Start the Terracotta server.
Start the Terracotta server with the following command:

UNIX/Linux
 [PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh &

Microsoft Windows
 [PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.bat

2. Start your application.
Your application should now be running with the Terracotta second-level cache.

3. Start the Terracotta Developer Console.
To view the cluster along with the cache, run the following command to start the Terracotta
Developer Console:

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/dev-console.sh &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\dev-console.bat

4. On the console's initial panel, click Connect... .
5. In the cluster navigation tree, navigate to Terracotta cluster > My application > Hibernate .

Hibernate and second-level cache statistics, as well as other visibility and control panels should be
available.

3.1.6 Step 6: Edit the Terracotta Configuration
This step shows you how to run clients and servers on separate machines and add failover (High Availability).
You will expand the Terracotta cluster and add High Availability by doing the following:

Moving the Terracotta server to its own machine
Creating a cluster with multiple Terracotta servers
Creating multiple application nodes

These tasks bring your cluster closer to a production architecture.

3.1.6a Procedure:

1. Shut down the Terracotta cluster.
2. Create a Terracotta configuration file called tc-config.xml with contents similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<!-- All content copyright Terracotta, Inc., unless otherwise indicated. All rights reserved. -->
<tc:tc-config xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-4.xsd"
xmlns:tc="http://www.terracotta.org/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <servers>
 <!-- Sets where the Terracotta server can be found. Replace the value of
 host with the server's IP address. -->
 <server host="server.1.ip.address" name="Server1">
 <data>%(user.home)/terracotta/server-data</data>
 <logs>%(user.home)/terracotta/server-logs</logs>
 </server>
 <!-- If using a standby Terracotta server, also referred to as an ACTIVE-
 PASSIVE configuration, add the second server here. -->
 <server host="server.2.ip.address" name="Server2">
 <data>%(user.home)/terracotta/server-data</data>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

41 of 162 2011-06-03 11:26

 <logs>%(user.home)/terracotta/server-logs</logs>
 </server>
 <ha>
 <mode>networked-active-passive</mode>
 <networked-active-passive>
 <election-time>5</election-time>
 </networked-active-passive>
 </ha>
 </servers>
 <!-- Sets where the generated client logs are saved on clients. -->
 <clients>
 <logs>%(user.home)/terracotta/client-logs</logs>
 </clients>
</tc:tc-config>

3. Install Terracotta 3.5.0 on a separate machine for each server you configure in tc-config.xml .
4. Copy the tc-config.xml to a location accessible to the Terracotta servers.
5. Perform Step 2: Install and Update the JAR files and Step 4: Edit Configuration Files steps on each

application node you want to run in the cluster.
Be sure to install your application and any application servers on each node.

6. Edit the <terracottaConfig> element in Terracotta Distributed Ehcache for Hibernate configuration
file, ehcache.xml , that you created above:

<!-- Add the servers that are configured in tc-config.xml. -->
<terracottaConfig url="server.1.ip.address:9510,server.2.ip.address:9510" />

Later in this procedure, you will see where to get more information on editing the settings in the
configuration file.

7. Copy ehcache.xml to each application node and ensure that it is on your application's classpath (or
in WEB-INF/classes for web applications).

8. Start the Terracotta server in the following way, replacing "Server1" with the name you gave your
server in tc-config.xml :

UNIX/Linux
 [PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh -f <path/to/tc-config.xml> -n Server1 &

Microsoft Windows
 [PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.bat -f <path\to\tc-config.xml> -n Server1 &

If you configured a second server, start that server in the same way on its machine, entering its name
after the -n flag. The second server to start up becomes the "hot" standby, or PASSIVE. Any other
servers you configured will also start up as standby servers.

9. Start all application servers.
10. Start the Terracotta Developer Console and view the cluster.

3.1.7 Step 7: Learn More
To learn more about working with a Terracotta cluster, see the following documents:

Working with Terracotta Configuration Files -- Explains how tc-config.xml is propagated and
loaded in a Terracotta cluster in different environments.
Terracotta Server Arrays -- Shows how to design Terracotta clusters that are fault-tolerant, maintain
data safety, and provide uninterrupted uptime.
Configuring Terracotta Clusters For High Availability -- Defines High Availability configuration properties
and explains how to apply them.
Terracotta Developers Console Guide

3.2 Testing and Tuning Enterprise Ehcache for Hibernate
This document shows you how to test and tune Enterprise Ehcache for Hibernate.

TIP: Top Tuning Tips

- Set Eviction Parameters

- Turn Off Query Cache

- Prevent Unnecessary Database Connections (see Reducing Unnecessary Database Connections)

- Configure Database Connection Pool (see Connection Pools)

- Turn off Unnecessary Statistics Gathering

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

42 of 162 2011-06-03 11:26

3.2.1 Testing the Cache
The main benefit of a Hibernate second-level cache is raising performance by decreasing the number of
times an application accesses the database. To gauge the level of database offloading provided by the
Enterprise Ehcache for Hibernate second-level cache, look for these benefits:

Server CPU offload – The CPU load on the database server should decrease.
Lower latency – The latency for returning data should decrease.
Higher Transactions per second (TPS) – The TPS rate should increase.
More concurrency – The number of threads that can access data should increase.

The number of threads that can simultaneously access the distributed second-level cache can be scaled up
more easily and efficiently than database connections, which generally are limited by the size of the
connection pool.

You should record measurements for all of these factors before enabling the Enterprise Ehcache for
Hibernate second-level cache to create a benchmark against which you can assess the impact of using the
cache. You should also record measurements for all of these factors before tuning the cache to gauge the
impact of any tuning changes you make.

Another important test in addition to performance testing is verifying that the expected data is being loaded.
For example, loading one entity can result in multiple cache entries. One approach to tracking cache
operations is to set Hibernate cache logging to "debug" in log4j.properties :

log4j.logger.org.hibernate.cache=debug

This level of logging should not be used during performance testing.

NOTE: Optimizing Cache Performance

Before doing performance testing, you should read through the rest of this document to learn about
optimizing cache performance. Some performance optimization can be done ahead of time, while some
may require testing to reveal its applicability.

When using a testing framework, ensure that the framework does not cause a performance bottleneck and
skew results.

3.2.2 Optimizing the Cache Size
Caches that get too large may become inefficient and suffer from performance degradation. A growing rate
of flushing and faulting is an indication of a cache that's become too large and should be pruned.

3.2.2a Eviction Parameters

The most important parameters for tuning cache size and cache performance in general are the following:

Time to Idle (TTI) – This parameter controls how long an entity can remain in the cache without being
accessed at least once. TTI is reset each time an entity is accessed. Use TTI to evict little-used entities
to shrink the cache or make room for more frequently used entities. Adjust the TTI up if the faulting
rate (data faulted in from the database) seems too high, and lower it if flushing (data cleared from
the cache) seems too high.
Time to Live (TTL) – This parameter controls how long an entity can remain in the cache, regardless of
how often it is used (it is _never_ overridden by TTI). Use TTL to prevent the cache from holding stale
data. As entities are evicted by TTL, fresh versions are cached the next time they are accessed.

TTI and TTL are set in seconds. See 2.3.4 How Configuration Affects Element Eviction for more information
on how configuration affects eviction.

You can also control Hibernate region sizes using the following parameters:

Target Max In-Memory Count - The maximum number of elements allowed in a region in any one client
(any one application server). If this target is exceeded, the client flushes elements to the Terracotta
Server Array until the count is within the allowed target. 0 means no eviction takes place (infinite size
is allowed).
Target Max Total Count - The maximum sum total number of elements allowed for a region in all
clients (all application servers). If this target is exceeded, eviction occurs to bring the count within the
allowed target. 0 means no eviction takes place (infinite size is allowed).

TIP: Default Eviction Parameters

When you first install Enterprise Ehcache for Hibernate, eviction is turned off by default because all
eviction parameters are set to 0. You should set these parameters to non-zero values to turn eviction
on, then tune them based on how your application requirements and performance characteristics.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

43 of 162 2011-06-03 11:26

How to Set Eviction Parameters

You can set eviction parameters in two different ways:

In ehcache.xml – Configuration file for Enterprise Ehcache for Hibernate with properties for
controlling eviction on a per-cache basis. See Setting Cache Eviction for more information.
In the Terracotta Developer Console – The GUI for Hibernate second-level cache allows you to apply
real-time values to eviction parameters and export a configuration file. For more information, see
8.1.4 Enterprise Ehcache for Hibernate Applications.

After setting eviction parameters, be sure to test the effect on performance (see Testing the Cache) .

3.2.2b Reducing the Cache Miss Rate

The cache miss rate is a measure of requests that the cache could not meet. Each miss can lead to a fault
which requires a database query. (However, misses and faults are not one-to-one since a query can return
results that satisfy more than one miss.) A high or growing cache miss rate indicates the cache should be
optimized.

To lower the miss rate, adjust for regions containing entities with high access rates to evict less frequently.
This keeps popular entities in the cache for longer periods of time. You should adjust eviction parameter
values incrementally and carefully observe the effect on the cache miss rate. For example, TTI and TTL that
are set too high can introduce other drawbacks, such as stale data or overly large caches.

3.2.2c Examinator Example

Examinator , the Terracotta reference application that uses Enterprise Ehcache for Hibernate to implement
the second-level cache, supports thousands of concurrent user sessions. This web-based test-taking
application caches exams and must have TTI and TTL properly tuned to prevent unnecessarily large data
caches and stale exam pages.

The following sections detail how certain cached Examinator data is configured for second-level caching.
Included are snippets from the Enterprise Ehcache for Hibernate configuration file (see Cache Configuration
File).

User Roles

The data defining user roles has the following characteristics:

Never changes – User roles are fixed (read only).
Accessed frequently – Each user session must have a user role.

Therefore, user roles are cached and never evicted (TTI=0, TTL=0). In general, read-only data that is used
frequently and never grows stale should be cached continuously.

<cache name="org.terracotta.reference.exam.domain.UserRole"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="0"
 timeToLiveSeconds="0"
 overflowToDisk="false">
 <terracotta/>
</cache>

User Data

User data, which includes the user entity and its role, is useful only while the user is active. This data has the
following characteristics:

Access is unpredictable – User interaction with the application is unpredictable and can be sporadic.
Lifetime is unpredictable – The data is useful as long as the user session has activity. Only when the
user becomes inactive are the associated entities idle.

Therefore, these entities should have a short idle time of two minutes (TTI=120) to allow data associated
with inactive user sessions to be evicted. However, there should never be eviction based on a hard lifetime
(TTL=0), thus allowing the associated entities to be cached indefinitely as long as TTI is reset by activity.

<cache name="org.terracotta.reference.exam.domain.User"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="00"
 overflowToDisk="false">
 <terracotta/>
</cache>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

44 of 162 2011-06-03 11:26

<cache name="org.terracotta.reference.exam.domain.User.roles"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="120"
 timeToLiveSeconds="0"
 overflowToDisk="false">
 <terracotta/>
</cache>

Exam Data

Exam data is includes the actual exams being taken by users. It has the following characteristics:

Rarely changes – There is the potential for exam questions to be changed in the database, but this
happens infrequently.
Data set is large – There can be any number of exams, and not all of them can be cached due to
limitations on the size of the cache.

Since there can be many different exams, and the potential exists for a cached exam to become stale,
cached exams should be periodically evicted based on lack of access (TTI=3600) and to ensure they are
up-to-date (TTL=86400).

<cache name="org.terracotta.reference.exam.domain.Exam"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="3600"
 timeToLiveSeconds="86400"
 overflowToDisk="false">
 <terracotta/>
</cache>
<cache name="org.terracotta.reference.exam.domain.Section"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="3600"
 timeToLiveSeconds="86400"
 overflowToDisk="false">
 <terracotta/>
</cache>
<cache name="org.terracotta.reference.exam.domain.Section.questions"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="3600"
 timeToLiveSeconds="86400"
 overflowToDisk="false">
 <terracotta/>
</cache>
<cache name="org.terracotta.reference.exam.domain.Section.sections"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="3600"
 timeToLiveSeconds="86400"
 overflowToDisk="false">
 <terracotta/>
</cache>
<cache name="org.terracotta.reference.exam.domain.Question"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="3600"
 timeToLiveSeconds="86400"
 overflowToDisk="false">
 <terracotta/>
</cache>
<cache name="org.terracotta.reference.exam.domain.Question.choices"
 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="3600"
 timeToLiveSeconds="86400"
 overflowToDisk="false">
 <terracotta/>
</cache>
<cache name="org.terracotta.reference.exam.domain.Choice"

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

45 of 162 2011-06-03 11:26

 maxElementsInMemory="1000"
 eternal="false"
 timeToIdleSeconds="3600"
 timeToLiveSeconds="86400"
 overflowToDisk="false">
 <terracotta/>
</cache>

3.2.3 Optimizing for Read-Only Data
If your application caches read-only data, the following may improve performance:

Turn off eviction for often-used, long-lived data (see Eviction Parameters).
Turn on key caching (see Local Key Cache).
Eliminate "empty" database connections (see Reducing Unnecessary Database Connections).

3.2.4 Reducing Unnecessary Database Connections
The JDBC mode Autocommit automatically writes changes to the database, making it unnecessary for an
application to do so explicitly. However, unnecessary database connections can result from Autocommit
because of the way JDBC drivers are designed. For example, transactional read-only operations in Hibernate,
even those that are resolved in the second-level cache, still generate "empty" database connections. This
situation, which can be tracked in database logs, can quickly have a detrimental effect on performance.

Turning off Autocommit should prevent empty database connections, but may not work in all cases. Lazily
fetching JDBC connections resolves the issue by preventing JDBC calls until a connection to the database
actually needed.

NOTE: Autocommit

While Autocommit should be turned off to reduce unnecessary database connections for applications that
create their own transaction boundaries, it may be useful for applications with on-demand (lazy) loading of
data. You should investigate Autocommit with your application to discover its effect.

Two options are provided for implementing lazy fetching of database connections:

Lazy Fetching with Spring-Managed Transactions
Lazy Fetching for Non Spring Applications

3.2.4a Lazy Fetching with Spring-Managed Transactions

If your application is based on the Spring framework, turning off Autocommit may not be enough to reduce
unnecessary database connections for transactional read operations. You can prevent these empty database
connections from occurring by using the Spring LazyConnectionDataSourceProxy proxy definition.
The proxy holds unnecessary JDBC calls until a connection to the database is actually required, at which time
the held calls are applied.

To implement the proxy, create a target DataSource definition (or rename your existing target DataSource)
and a LazyConnectionDataSourceProxy proxy definition in the Spring application context file:

<!-- Renamed the existing target DataSource to 'dataSourceTarget' which will be used by the proxy. -->
<bean id="dataSourceTarget"
class="org.apache.commons.dbcp.BasicDataSource"
 destroy-method="close">
 <property name="driverClassName"><value>com.mysql.jdbc.Driver</value></property>
 <property name="url"><value>jdbc:mysql://localhost:3306/imagedb</value></property>
 <property name="username"><value>admin</value></property>
 <property name="password"><value></value></property>
 <!-- other datasource configuration properties -->
</bean>
<!-- This is the lazy DataSource proxy that interacts with the target DataSource once a real statement
is sent to the database. Users use this DataSource to set up their Hibernate session factory, which in
turn forces the Hibernate second-level cache and also everything that interacts with that Hibernate
session factory to use it. -->
<bean id="dataSource"
class="org.springframework.jdbc.datasource.LazyConnectionDataSourceProxy">
 <property name="targetDataSource"><ref local="dataSourceTarget"/></property>
</bean>

Your application's SessionFactory, transaction manager, and all DAOs should access the proxy. Since the proxy
implements the DataSource interface too, it can simply be passed in instead of the target DataSource.

See the Spring documentation for more information.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

46 of 162 2011-06-03 11:26

3.2.4b Lazy Fetching for Non Spring Applications

By implementing a custom Hibernate connection provider, you can use the
LazyConnectionDataSourceProxy in a non-Spring based application:

public class LazyDBCPConnectionProvider implements ConnectionProvider {
 private DataSource ds;
 private BasicDataSource basicDs;
 public void configure(Properties props) throws HibernateException {
 // DBCP properties used to create the BasicDataSource
 Properties dbcpProperties = new Properties();
 // set some DBCP properties or implement logic to get them from the Hibernate config
 try {
 // Let the factory create the pool
 basicDs = (BasicDataSource)BasicDataSourceFactory.createDataSource(dbcpProperties);
 ds = new LazyConnectionDataSourceProxy(basicDs);
 // The BasicDataSource has lazy initialization
 // borrowing a connection will start the DataSource
 // and make sure it is configured correctly.
 Connection conn = ds.getConnection();
 conn.close();
 } catch (Exception e) {
 String message = "Could not create a DBCP pool";
 if (basicDs != null) {
 try {
 basicDs.close();
 } catch (Exception e2) {
 // ignore
 }
 ds = null;
 basicDs = null;
 }
 throw new HibernateException(message, e);
 }
 }
 public Connection getConnection() throws SQLException {
 return ds.getConnection();
 }
 public void closeConnection(Connection conn) throws SQLException {
 conn.close();
 }
 public void close() throws HibernateException {
 try {
 if (basicDs != null) {
 basicDs.close();
 ds = null;
 basicDs = null;
 }
 } catch (Exception e) {
 throw new HibernateException("Could not close DBCP pool", e);
 }
 }
 public boolean supportsAggressiveRelease() {
 return false;
 }
}

To use the custom connection provider, update hibernate.cfg.xml with the following property:

<property name="connection.provider_class">LazyDBCPConnectionProvider</property>

3.2.5 Reducing Memory Usage with Batch Processing
If your application must perform a large number of insertions or updates with Hibernate, a potential
antipattern can emerge from the fact that all transactional insertions or updates in a session are stored in
the first-level cache until flushed. Therefore, waiting to flush until the transaction is committed can result in
an OutOfMemoryException (OOME) during large operations of this type.

You can prevent OOMEs in this case by processing the insertions or updates in batches, flushing after each
batch. The Hibernate core documentation gives the following example for inserts:

Session session = sessionFactory.openSession();

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

47 of 162 2011-06-03 11:26

Transaction tx = session.beginTransaction();

for (int i=0; i<100000; i++) {
 Customer customer = new Customer(.....);
 session.save(customer);
 if (i % 20 == 0) { //20, same as the JDBC batch size
 //flush a batch of inserts and release memory:
 session.flush();
 session.clear();
 }
}

tx.commit();
session.close();

TIP: session.clear()

The performance of session.clear() has been improved in Hibernate 3.3.2.

Updates can be batched similarly. The JDBC batch size referred to in the comment above is set in the
Hibernate configuration property hibernate.jdbc.batch_size . For more information, see "Batch
processing" in the Hibernate core documentation .

3.2.6 Other Important Tuning Factors
The following factors could affect the performance of your second-level cache.

3.2.6a Query Cache

This Hibernate feature creates overhead regardless of how many queries are actually cached. For example,
it records timestamps for entities even if not caching the related queries. Query cache is on if the following
element is set in hibernate.cfg.xml :

<property name="hibernate.cache.use_query_cache">true</property>

If query cache is turned on, two specially-named cache regions appear in the Terracotta Developer Console
cache-regions list. The two regions are the query cache and the timestamp cache.

Unless you are certain that the query cache benefits your application, it is recommended that you turn it off
(set hibernate.cache.use_query_cache to "false").

3.2.6b Connection Pools

If your installation of Hibernate uses JDBC directly, you use a connection pool to create and manage the
JDBC connections to a database. Hibernate provides a default connection pool and supports a number of
different connection pools. The low-performance default connection pool is inadequate for more then just
initial development and testing. Use one of the supported connection pools, such as C3P0 or DBCP, and be
sure to set the number of connections to an optimal amount for your application.

3.2.6c Local Key Cache

Enterprise Ehcache for Hibernate can cache a "hotset" of keys on clients to add locality-of-reference, a
feature suitable for read-only cases. Note that the set of keys must be small enough for available memory.

See Terracotta Clustering Configuration Elements for more information on configuring a local key cache.

3.2.6d Hibernate CacheMode

CacheMode is the Hibernate class that controls how a session interacts with second-level and query caches.

If your application explicitly warms the cache (reloads entities), CacheMode should be set to REFRESH to
prevent unnecessary reads and null checks.

3.2.6e Cache Concurrency Strategy

If your application can tolerate somewhat inconsistent views of data, and the data does not change
frequently, consider changing the cache concurrency strategy from READ_WRITE to NONSTRICT_READ_WRITE
to boost performance. See Cache Concurrency Strategies for more information on cache concurrency
strategies.

3.2.6f Terracotta Server Optimization

You can optimize the Terracotta servers in your cluster to improve cluster performance with a second-level

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

48 of 162 2011-06-03 11:26

cache. Some server optimization requires editing the Terracotta configuration file. For more information on
Terracotta configuration file, see:

Configuring DSO
Working with Terracotta Configuration Files
Configuration Guide and Reference

Test the following recommendations to gauge their impact on performance.

Less Aggressive Memory Management

By default, Terracotta servers clear a certain amount of heap memory based on the percentage of memory
used. You can configure a Terracotta server to be less aggressive in clearing heap memory by raising the
threshold that triggers this action. Allowing more data to remain in memory makes larger caches more
efficient by reducing the server's swap-to-disk dependence. Be sure to test any changes to the threshold to
confirm that the server doesn't suffer an OOME by failing to effectively manage memory at the new threshold
level.

The default threshold is 70 (70 percent of heap memory used). Raise the threshold by setting a higher value
for the Terracotta property l2.cachemanager.threshold in one of the following ways.

Create a Java Property

To set the threshold at 90, add the following option to $JAVA_OPTS before starting the Terracotta server:

-Dcom.tc.l2.cachemanager.threshold=90

Be sure to export JAVA_OPTS. If you adjust the threshold value after the server is running, you must restart
the Terracotta server for the new value to take effect.

Add to Terracotta Configuration

Add the following configuration to the top of the Terracotta configuration file (tc-config.xml by
default) before starting the Terracotta server:

<tc-properties>
 <property name="l2.cachemanager.threshold" value="90" />
</tc-properties>

You must start the Terracotta server with the configuration file you've updated:

start-tc-server.sh -f <path_to_configuration_file>

Use start-tc-server.bat in Microsoft Windows.

Run in Non-Persistent Mode

If your data is backed by a database, and no critical data exists only in memory, you can run the Terracotta
server in non-persistent mode (temporary-swap-only mode). By default, Terracotta servers are set to
non-persistent mode. For more information on persistence, see the Terracotta Configuration Guide and
Reference .

Reduce the Berkeley DB Memory Footprint

Terracotta allots a certain percentage of memory to Berkeley DB, the database application used to manage
the disk store. The default is 25 percent. Under the following circumstances, this percentage can be
reduced:

Running in temporary-swap-only mode (see Run in Non-Persistent Mode) requires less memory for
Berkeley DB since it is managing less data.
Running with a large heap size may require a smaller percentage of memory for Berkeley DB.

For example, if Berkeley DB has a fixed requirement of 300– 400MB of memory, and the heap size is set to
6GB, Berkeley DB can be allotted eight percent. You can set the percentage using the Terracotta property
l2.berkeleydb.je.maxMemoryPercent in one of the following ways.

Create a Java Property

To set the percentage at 8, add the following option to $JAVA_OPTS (or $JAVA_OPTIONS) before
starting the Terracotta server:

-Dcom.tc.l2.berkeleydb.je.maxMemoryPercent=8

Be sure to export JAVA_OPTS (or JAVA_OPTIONS). If you adjust the percentage value after the server is
running, you must restart the Terracotta server for the new value to take effect.

Add to Terracotta Configuration

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

49 of 162 2011-06-03 11:26

Add the following configuration to the top of the Terracotta configuration file (tc-config.xml by
default) before starting the Terracotta server:

<tc-properties>
 <property name="l2.berkeleydb.je.maxMemoryPercent" value="8" />
</tc-properties>

You must start the Terracotta server with the configuration file you've updated:

start-tc-server.sh -f <path_to_configuration_file>

Use start-tc-server.bat in Microsoft Windows.

If you lower the value of l2.berkeleydb.je.maxMemoryPercent , be sure to test the new value's
effectiveness by noting the amount of flushing to disk that occurs in the Terracotta server. If flushing rises to
a level that impacts performance, increase the value of l2.berkeleydb.je.maxMemoryPercent
incrementally until an optimal level is observed.

3.2.6g JDK Version

While both JDK 1.5 and 1.6 are supported, JDK 1.6 may deliver better performance.

3.2.6h Statistics Gathering

Each time you connect to the Terracotta cluster with the Developer Console and go to the second-level cache
node, Hibernate and cache statistics gathering is automatically started. Since this may have a negative
impact on performance, consider disabling statistics gathering during performance tests and in production if
you continue to use the Developer Console. To disable statistics gathering, navigate to the Overview panel in
the Hibernate view, then click Disable Statistics .

3.2.6i Logging

There is a negative impact on performance if logging is set. Consider disabling statistics logging during
performance tests and in production.

To disable statistics gathering in the Terracotta Developer Console, navigate to the Configuration panel in
the Hibernate view, then select the target regions in the list and clear Logging enabled if it is set.

To disable debug logging for Enterprise Ehcache, set the logging level for the clustered store to be less
granular than FINE.

3.2.6j Java Garbage Collection

Garbage Collection (GC) should be aggressive. Consider using the -server Java option on all application
servers to force a "server" GC strategy.

3.2.6k Database Tuning

A well-tuned database reduces latency and improves performance:

Indexes should be optimized for your application.
Databases should be indexed to load data quickly, based on the types of queries your application
performs (type of key used, for example).
Database tables should be of a format that is optimized for your application. In MySQL, for example,
the InnoDB format provides better performance than the default MyISAM (or the older ISAM) format if
your application performs many transactions and uses foreign keys.
Ensure that the database is set to accept at least as many connections as the connection pool can
open. See Connection Pools for more information.

The following are issues that could affect the functioning of Enterprise Ehcache for Hibernate.

3.2.6l Unwanted Synchronization with Hibernate Direct Field Access

When direct field access is used, Hibernate uses reflection to access fields, triggering unwanted
synchronization that can degrade performance across a cluster. See this JIRA issue for more information.

3.2.6m Hibernate Exception Thrown With Cascade Option

Under certain circumstances, using a cascade="all-delete-orphan" can throw a Hibernate
exception. This will happen if you load an object with a cascade="all-delete-orphan" collection and then
remove the reference to the collection. Don't replace this collection, use clear() so the orphan-deletion
algorithm can detect your change. See the Hibernate troubleshooting issue s for more information.

3.2.6n Cacheable Entities and Collections Not Cached

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

50 of 162 2011-06-03 11:26

Certain data that should be in the second-level cache may not have been configured for caching (or may
have not been configured correctly). This oversight may not cause an error, but may impact performance.
See Finding Cacheable Entities and Collections for more information.

3.3 Enterprise Ehcache for Hibernate Reference
This document contains technical reference information for Enterprise Ehcache for Hibernate.

3.3.1 Cache Configuration File
Note the following about ehcache.xml in a Terracotta cluster:

The copy on disk is loaded into memory from the first Terracotta client (also called application server
or node) to join the cluster.
Once loaded, the configuration is persisted in memory by the Terracotta servers in the cluster and
survives client restarts.
In-memory configuration can be edited in the Terracotta Developer Console.
Changes take effect immediately but are not written to the original on-disk copy of ehcache.xml .
The in-memory cache configuration is removed with server restarts if the servers are in non-persistent
mode , which is the default.
The original (on-disk) ehcache.xml is loaded.
The in-memory cache configuration survives server restarts if the servers are in persistent mode
(default is non-persistent).
If you are using the Terracotta servers with persistence of shared data, and you want the cluster to
load the original (on-disk) ehcache.xml , the servers' database must be wiped by removing the data
files from the servers' server-data directory. This directory is specified in the Terracotta
configuration file in effect (tc-config.xml by default). Wiping the database causes all persisted
shared data to be lost .

3.3.1a Setting Cache Eviction

Cache eviction removes elements from the cache based on parameters with configurable values. Having an
optimal eviction configuration is critical to maintaining cache performance. For more information on cache
eviction, see 2.3.1a Setting Cache Eviction.

See 2.3.4 How Configuration Affects Element Eviction for more informaton on how configuration can impact
eviction. See 2.3.1d Terracotta Clustering Configuration Elements for definitions of other available
configuration properties.

3.3.1b Cache-Configuration File Properties

See Terracotta Clustering Configuration Elements for more information.

3.3.1c Exporting Configuration from the Developer Console

To create or edit a cache configuration in a live cluster, see 8.1.3d Editing Cache Configuration.

To persist custom cache configuration values, create a cache configuration file by exporting customized
configuration from the Terracotta Developer Console or create a file that conforms to the required format.
This file must take the place of any configuration file used when the cluster was last started.

3.3.2 Migrating From an Existing Second-Level Cache
If you are migrating from another second-level cache provider, recreate the structure and values of your
cache configuration in ehcache.xml . Then simply follow the directions for installing and configuring
Enterprise Ehcache for Hibernate in Enterprise Ehcache for Hibernate Express Installation.

3.3.3 Cache Concurrency Strategies
A cache concurrency strategy controls how the second-level cache is updated based on how often data is
likely to change. Cache concurrency is set using the usage attribute in one of the following ways:

With the @Cache annotation:

 @Cache(usage=CacheConcurrencyStrategy.READ_WRITE)

In the cache-mapping configuration entry in the Hibernate configuration file hibernate.cfg.xml
.
In the <cache> property of a class or collection mapping file (hbm file).

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

51 of 162 2011-06-03 11:26

Supported cache concurrency strategies are described in the following sections.

3.3.3a READ_ONLY

The READ_ONLY strategy works well for unchanging reference data. It can also work in use cases where the
cache is periodically invalidated by an external event. That event can flush the cache, then allow it to
repopulate.

3.3.3b READ_WRITE

The READ_WRITE strategy works well for data that changes and must be committed. READ_WRITE guarantees
correct data at all times by using locks to ensure that transactions are not open to more than one thread.

If a cached element is created or changed in the database, READ_WRITE updates the cache after the
transaction completes. A check is done for the element’s existence and (if the element exists) for an existing
lock. The cached element is guaranteed to be the same version as the one in database.

Note, however, that Hibernate may lock elements before a transaction (update or delete) completes to the
database. In this case, other transactions attempting to access those elements will miss and be forced to
retrieve the data from the database.

Cache loading is done with checks for existence and version (existing elements that are newer are not
replaced).

Enterprise Ehcache for Hibernate is designed to maximize performance with READ_WRITE strategies when
the data involved is partitioned by your application (using sticky sessions, for example). However, caching
needs are application-dependent and should be investigated on a case-by-case basis.

3.3.3c NONSTRICT_READ_WRITE

The NONSTRICT_READ_WRITE strategy is similar to READ_WRITE, but may provide better performance.
NONSTRICT_READ_WRITE works well for data that changes and must be committed, but it does not guarantee
exclusivity or consistency (and so avoids the associated performance costs). This strategy allows more than
one transaction to simultaneously write to the same entity, and is intended for applications able to tolerate
caches that may at times be out of sync with the database.

Because it does not guarantee the stability of data as it is changed in the database, NONSTRICT_READ_WRITE
does not update the cache when an element is created or changed in the database. However, elements that
are updated in the database, whether or not the transaction completes , are removed from the cache.

Cache loading is done with no checks, and get() operations return null for nonexistent elements.

3.3.3d TRANSACTIONAL

The TRANSACTIONAL strategy is intended for use in an environment utilizing the Java Transaction API (JTA) to
manage transactions across a number of XA resources. This strategy guarantees that a cache remains in sync
with other resources, such as databases and queues. Hibernate does not use locking for any type of access,
but relies instead on a properly configured transactional cache to handle transaction isolation and data
integrity.

The TRANSACTIONAL strategy is supported in Ehcache 2.0 and higher. For more information on how to set up
a second-level cache with transactional caches, see Setting Up Transactional Caches.

3.3.3e How Entitymanagers Choose the Data Source

Entitymanagers can read data from the cache, or from the database. Which source the entitymanager
selects depends on the cache concurrency strategy chosen.

3.3.4 Setting Up Transactional Caches
To set up transactional caches in a second-level cache with Enterprise Ehcache for Hibernate, ensure the
following:

Ehcache

You are using Ehcache 2.1.0 or higher.
The attribute transactionalMode is set to "xa".
The cache is clustered (the <cache> element has the subelement <terracotta clustered="true">).
For example, the following cache is configured to be transactional:

<cache name="com.my.package.Foo"
 maxElementsInMemory="500"
 eternal="false"
 overflowToDisk="false"

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

52 of 162 2011-06-03 11:26

 transactionalMode="xa">
 <terracotta clustered="true"/>
</cache>

The cache UpdateTimestampsCache is not configured to be transactional.
Hibernate updates org.hibernate.cache.UpdateTimestampsCache that prevents it from
being able to participate in XA transactions.

Hibernate

You are using Hibernate 3.3.
The factory class used for the second-level cache is
net.sf.ehcache.hibernate.EhCacheRegionFactory .
Query cache is turned off.
The value of current_session_context_class is jta .
The value of transaction.manager_lookup_class is the name of a
TransactionManagerLookup class (see your Transaction Manager).
The value of transaction.factory_class is the name of a TransactionFactory class to use with
the Hibernate Transaction API.
The cache concurrency strategy is set to TRANSACTIONAL.
For example, to set the cache concurrency strategy for com.my.package.Foo in
hibernate.cfg.xml :

<class-cache class="com.my.package.Foo" usage="transactional"/>

Or in a Hibernate mapping file (hbm file):

<cache usage="transactional"/>

Or using annotations:

@Cache(usage=CacheConcurrencyStrategy.TRANSACTIONAL)
public class Foo {...}

For more on cache concurrency strategies, see Cache Concurrency Strategies.

3.3.5 Configuring Multiple Hibernate Applications
If you are using more than one Hibernate web application with the Terracotta second-level cache, additional
configuration is needed to allow for multiple classloaders. See the section on configuring an application
group (app-groups) in the Configuration Guide and Reference for more information on configuring
application groups.

3.3.6 Finding Cacheable Entities and Collections
Certain data that should be in the second-level cache may not have been configured for caching. This
oversight may not cause an error, but may impact performance.

Using the Terracotta Developer Console, you can compare the set of cached regions with the set of all
Hibernate entities and collections. Note any items, such as collections containing fixed or slow-changing
data, that appear as Hibernate entities but do not have corresponding cache regions.

3.3.7 Cache Regions in the Object Browser
If the Enterprise Ehcache for Hibernate second-level cache is being clustered correctly, a Terracotta root
representing the second-level cache appears in the Terracotta Developer Console's object browser. Under
this root, which exists in every client (application server), are the cached regions and their children.

You can use this root to verify that the second-level cache is running and is clustered with Terracotta:

1. Start the Terracotta server:

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh -f <path_to_tc-config.xml> &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.bat -f <path_to_tc-config.xml>

2. Start your application.
You can start more than one instance of your application.

3. Start the Terracotta Developer Console:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

53 of 162 2011-06-03 11:26

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/dev-console.sh &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\dev-console.bat

Using the Terracotta Developer Console, verify that there is a root named
default:terracottaHibernateCaches . For each Terracotta client (application server), the caches
should appear as MapEntry objects under this root, one per cache region. The data itself is found inside
these cache-region entries.

3.3.8 Hibernate Statistics Sampling Rate
The second-level cache runtime statistics are pulled from Hibernate statistics, which have a fixed sampling
rate of one second (sample once per second). The Terracotta Developer Console's sampling rate for display
purposes, however, is adjustable.

To display all of the Hibernate statistical counts, set the Terracotta Developer Console's sampling rate to one
second. To set the sampling rate, choose Options... from the Developer Console's Tools menu, then set Poll
period seconds to "1".

For example, if the sampled Hibernate statistics record the Cache Miss Count values "15, 25, 62, 10, 12, 43,"
and the Terracotta Developer Console's sampling rate is set to one second, then all of these values are
graphed. However, if the Terracotta Developer Console's sampling rate is set to three seconds, then only the
values "15, 62, 43" are graphed (assuming that the first poll period coincides with the first value recorded).

3.3.9 Is a Cache Appropriate for Your Use Case?
Some use cases may present hurdles to realizing benefits from a second-level Hibernate cache
implementation.

3.3.9a Frequent Updates of Database

Volatile data requires frequent cache invalidation, which increases the overhead of maintaining the cache.
At some point this overhead impacts performance at a cost too high to make the cache favorable. Identifying
"hotsets" of data can mitigate this situation by limiting the amount of data that requires reloading. Another
solution is scaling your cluster to keep more data in memory (see Terracotta Server Arrays).

3.3.9b Very Large Data Sets

Huge data sets that are queried randomly (or across the set with no clear pattern or "hotsets") are difficult to
cache because of the impact on memory of attempting to load that set or having to evict and load elements
at a very high rate. Solutions include scaling the cluster to allow more data into memory (see Terracotta
Server Arrays), adding storage to allow Terracotta to spill more data to disk, and using partitioning strategies
to prevent any one node from loading too much data.

3.3.9c Frequent Updates of In-Memory Data

As the rate of updating cached data goes up, application performance goes down as Hibernate attempts to
manage and persist the changes. Write-behind or some asynchronous approach to writing the data may be a
good solution for this issue (see DSO Async Processing).

3.3.9d Low Frequency of Cached Data Queries

The benefits of caching are maximized when cached data is queried multiple times before expiring. If
cached data is infrequently accessed, or often expires before it is used, the benefits of caching may be lost.
Solutions to this situation include invalidating data in the cache more often to force updates. Also,
refactoring your application to cache more frequently queried data and avoid caching data that tends to
expire unused.

3.3.9e Requirements of Critical Data

Cached data cannot be guaranteed to be consistent at all times with the data in a database. In situations
where this must guaranteed, such as when an application requires auditing, access to the data must be
through the System of Record (SoR). Financial applications, for example, require auditing, and for this the
database must be accessed directly. If critical data is changed in a cache, however, the data obtained from
the database could be erroneous.

3.3.9f Database Modified by Other Applications

If data in the database can be modified by applications outside of your application with Hibernate, and that
same data is eligible for the second-level cache, unpredictable results could occur. One solution is a redesign

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

54 of 162 2011-06-03 11:26

to prevent data that can end up in the cache from being modified by applications outside of the scope of
your Hibernate application.

4 Quartz Scheduler

Quartz Scheduler is a full-featured job scheduling service for Java applications. The TerracottaJobStore for
Quartz Scheduler clusters that service. Clustering Quartz Scheduler using TerracottaJobStore provides a
number of advantages:

Adds High-Availability – Use "hot" standbys to immediately replace failed servers with no downtime, no
lost data.
Includes a Locality API – Route jobs to specific node groups or base routing decisions on system
characteristics and available resources.
Improves Performance – Offload traditional databases and automatically distribute load.
Provides a Clear Scale-Out Path – Add capacity without requiring additional database resources.
Ensures Persistence – Automatically back up shared data without impacting cluster performance.

To install the TerracottaJobStore for Quartz Scheduler, see Clustering Quartz Scheduler.

4.1 Clustering Quartz Scheduler
This document shows you how to add Terracotta clustering to an application that is using Quartz Scheduler.
Use this express installation if you have been running your application:

on a single JVM, or
on a cluster using JDBC-Jobstore.

To set up the cluster with Terracotta, you will add a Terracotta JAR to each application and run a Terracotta
server array. Except as noted below, you can continue to use Quartz in your application as specified in the
Quartz documentation .

To add Terracotta clustering to an application that is using Quartz, follow these steps:

4.1.1 Step 1: Requirements

JDK 1.5 or higher.
Terracotta 3.5.0 or higher
Download the kit and run the installer on the machine that will host the Terracotta server.
All clustered Quartz objects must be serializable.
If you create Quartz objects such as Trigger types, they must be serializable.

4.1.2 Step 2: Install Quartz Scheduler
For guaranteed compatibility, use the JAR files included with the Terracotta kit you are installing. Mixing
with older components may cause errors or unexpected behavior.

To install the Quartz Scheduler in your application, add the following JAR files to your application's
classpath:

${TERRACOTTA_HOME}/quartz/quartz-terracotta-ee-<version>.jar
<version> is the current version of the Quartz-Terracotta JAR.
${TERRACOTTA_HOME}/quartz/quartz-<quartz-version>.jar
<quartz-version> is the current version of Quartz (1.7.0 or higher).
${TERRACOTTA_HOME}/common/terracotta-toolkit-<API-version>-runtime-
ee-<version>.jar
The Terracotta Toolkit JAR contains the Terracotta client libraries. <API-version> refers to the
Terracotta Toolkit API version. <version> is the current version of the Terracotta Toolkit JAR.

If you are using the open-source edition of the Terracotta kit, no JAR files will have "-ee-" as part of their
name.

If you are using a WAR file, add these JAR files to its WEB-INF/lib directory.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

55 of 162 2011-06-03 11:26

NOTE: Application Servers

Most application servers (or web containers) should work with this installation of the Quartz Scheduler.
However, note the following:

- GlassFish application server – You must add the following to domains.xml :

<jvm-options>-Dcom.sun.enterprise.server.ss.ASQuickStartup=false</jvm-
options>

- WebLogic application server – You must use the supported version of WebLogic.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

56 of 162 2011-06-03 11:26

4.1.3 Step 3: Configure Quartz Scheduler
The Quartz configuration file, quartz.properties by default, should be on your application's classpath.
If you are using a WAR file, add the Quartz configuration file to WEB-INF/classes or to a JAR file that is
included in WEB-INF/lib .

4.1.3a Add Terracotta Configuration

To be clustered by Terracotta, the following properties in quartz.properties must be set as follows:

Do not use the jobStore class TerracottaJobStore unless you are using the open-source version of the
Terracotta Server Array.
org.quartz.jobStore.class = org.terracotta.quartz.EnterpriseTerracottaJobStore
org.quartz.jobStore.tcConfigUrl = <path/to/Terracotta/configuration>

The property org.quartz.jobStore.tcConfigUrl must point the client (or application server) at
the location of the Terracotta configuration.

TIP: Terracotta Clients and Servers

In a Terracotta cluster, the application server is also known as the client.

The client must load the configuration from a file or a Terracotta server. If loading from a server, give the
server’s hostname and its Terracotta DSO port (9510 by default). The following example shows a
configuration that is loaded from the Terracotta server on the local host:

Do not use the jobStore class TerracottaJobStore unless you are using the open-source version of the
Terracotta Server Array.
org.quartz.jobStore.class = org.terracotta.quartz.EnterpriseTerracottaJobStore
org.quartz.jobStore.tcConfigUrl = localhost:9510

To load Terracotta configuration from a Terracotta configuration file (tc-config.xml by default), use a
path. For example, if the Terracotta configuration file is located on myHost.myNet.net at
/usr/local/TerracottaHome , use the full URL along with the configuration file’s name:

Do not use the jobStore class TerracottaJobStore unless you are using the open-source version of
Terracotta Server Array.
org.quartz.jobStore.class = org.terracotta.quartz.EnterpriseTerracottaJobStore
org.quartz.jobStore.tcConfigUrl = file://myHost.myNet.net/usr/local/TerracottaHome/tc-config.xml

If the Terracotta configuration source changes at a later time, it must be updated in configuration.

4.1.3b Scheduler Instance Name

A Quartz scheduler has a default name configured by the following quartz.properties property:

org.quartz.scheduler.instanceName = QuartzScheduler

Setting this property is not required. However, you can use this property to instantiate and differentiate
between two or more instances of the scheduler, each of which then receives a separate store in the
Terracotta cluster.

Using different scheduler names allows you to isolate different job stores within the Terracotta cluster
(logically unique scheduler instances). Using the same scheduler name allows different scheduler instances to
share the same job store in the cluster.

4.1.4 Step 4: Start the Cluster

1. Start the Terracotta server:

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.bat

2. Start the application servers.
3. Start the Terracotta Developer Console:

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/dev-console.sh &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\dev-console.bat

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

57 of 162 2011-06-03 11:26

4. Connect to the Terracotta cluster.
Click Connect... in the Terracotta Developer Console.

5. Click the Topology node in the cluster navigation window to see the Terracotta servers and clients
(application servers) in the Terracotta cluster.
Your console should have a similar appearance to the following figure.

4.1.5 Step 5: Edit the Terracotta Configuration
This step shows you how to run clients and servers on separate machines and add failover (High Availability).
You will expand the Terracotta cluster and add High Availability by doing the following:

Moving the Terracotta server to its own machine
Creating a cluster with multiple Terracotta servers
Creating multiple application nodes

These tasks bring your cluster closer to a production architecture.

4.1.5a Procedure:

1. Shut down the Terracotta cluster.
2. Create a Terracotta configuration file called tc-config.xml with contents similar to the following:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

58 of 162 2011-06-03 11:26

<?xml version="1.0" encoding="UTF-8"?>
<!-- All content copyright Terracotta, Inc., unless otherwise indicated. All rights reserved. -->
<tc:tc-config xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-5.xsd"
xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <servers>
 <!-- Sets where the Terracotta server can be found. Replace the value of host with the
server's IP address. -->
 <server host="server.1.ip.address" name="Server1">
 <data>%(user.home)/terracotta/server-data</data>
 <logs>%(user.home)/terracotta/server-logs</logs>
 </server>
 <!-- If using a standby Terracotta server, also referred to as an ACTIVE-PASSIVE configuration, add
the second server here. -->
 <server host="server.2.ip.address" name="Server2">
 <data>%(user.home)/terracotta/server-data</data>
 <logs>%(user.home)/terracotta/server-logs</logs>
 </server>
<!-- If using more than one server, add an <ha> section. -->
 <ha>
 <mode>networked-active-passive</mode>
 <networked-active-passive>
 <election-time>5</election-time>
 </networked-active-passive>
 </ha>
 </servers>
 <!-- Sets where the generated client logs are saved on clients. -->
 <clients>
 <logs>%(user.home)/terracotta/client-logs</logs>
 </clients>
</tc:tc-config>

3. Install Terracotta 3.5.0 on a separate machine for each server you configure in tc-config.xml .
4. Copy the tc-config.xml to a location accessible to the Terracotta servers.
5. Perform Step 2: Install Quartz Scheduler and Step 3: Configure Quartz Scheduler on each application

node you want to run in the cluster.
Be sure to install your application and any application servers on each node.

6. Edit the org.quartz.jobStore.tcConfigUrl property in quartz.properties to list both
Terracotta servers:

org.quartz.jobStore.tcConfigUrl = server.1.ip.address:9510,server.2.ip.address:9510

7. Copy quartz.properties to each application node and ensure that it is on your application's
classpath. If you are using a WAR file, add the Quartz configuration file to WEB-INF/classes or to
a JAR file that is included in WEB-INF/lib .

8. Start the Terracotta server in the following way, replacing "Server1" with the name you gave your
server in tc-config.xml :

UNIX/Linux
 [PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh -f <path/to/tc-config.xml> -n Server1 &

Microsoft Windows
 [PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.bat -f <path\to\tc-config.xml> -n Server1 &

If you configured a second server, start that server in the same way on its machine, entering its name
after the -n flag. The second server to start up becomes the "hot" standby, or PASSIVE. Any other
servers you configured will also start up as standby servers.

9. Start all application servers.
10. Start the Terracotta Developer Console and view the cluster.

4.1.6 Step 6: Learn More
To learn more about working with a Terracotta cluster, see the following documents:

6.1 Working with Terracotta Configuration Files – Explains how tc-config.xml is propagated and
loaded in a Terracotta cluster in different environments.
6.3 Terracotta Server Arrays – Shows how to design Terracotta clusters that are fault-tolerant,
maintain data safety, and provide uninterrupted uptime.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

59 of 162 2011-06-03 11:26

6.2 Configuring Terracotta Clusters For High Availability – Defines High Availability configuration
properties and explains how to apply them.
8.1 Terracotta Developer Console – Provides visibility into and control of caches.

4.2 Quartz Scheduler Reference
This section contains information on functional aspects of Terracotta Quartz Scheduler and optimizing your
use of TerracottaJobstore for Quartz Scheduler.

4.2.1 Quartz Scheduler Where (Locality API)
Terracotta Quartz Scheduler Where is an Enterprise feature that allows jobs and triggers to run on specified
Terracotta clients instead of randomly chosen ones. Quartz Scheduler Where provides a locality API that has
a more readable fluent interface for creating and scheduling jobs and triggers. This locality API, together
with configuration, can be used to route jobs to nodes based on defined criteria:

Specific resources constraints such as free memory.
Specific system characteristics such as type of operating system.
A member of a specified group of nodes.

This section shows you how to install, configure, and use the locality API.

4.2.1a Installing Quartz Scheduler Where

To access the Quartz Scheduler Locality API in a standard installation, include the file quartz-
terracotta-ee-<version>.jar in your classpath, where <version> is Quartz version 2.0.0 or higher.
This jar is found under the ${TERRACOTTA_HOME}/quartz directory.

For DSO installation, see 9.1.6 Quartz Scheduler DSO Installation.

4.2.1b Configuring Quartz Scheduler Where

To configure Quartz Scheduler Where, follow these steps:

1. Edit quartz.properties to cluster with Terracotta.
See 4.1 Clustering Quartz Scheduler for more information.

2. If you intend to use node groups, configure an implementation of
org.quartz.spi.InstanceIdGenerator to generate instance IDs to be used in the locality
configuration.
See 4.2.1c Understanding Generated Node IDs for more information about generating instance IDs.

3. Configure the node and trigger groups in quartzLocality.properties . For example:

Set up node groups that can be referenced from application code. The values shown are instance IDs:
org.quartz.locality.nodeGroup.slowJobs = node0, node3
org.quartz.locality.nodeGroup.fastJobs = node1, node2
org.quartz.locality.nodeGroup.allNodes = node0, node1, node2, node3

Set up trigger groups whose triggers fire only on nodes in the specified node groups. For example, a
trigger in the trigger group slowTriggers will fire only on node0 and node3:
org.quartz.locality.nodeGroup.slowJobs.triggerGroups = slowTriggers
org.quartz.locality.nodeGroup.fastJobs.triggerGroups = fastTriggers

4. Ensure that quartzLocality.properties is on the classpath, the same as
quartz.properties .

See 4.2.1e Quartz Scheduler Where Code Sample for an example of how to use Quartz Scheduler Where.

4.2.1c Understanding Generated Node IDs

Terracotta clients each run an instance of a clustered Quartz Scheduler scheduler. Every instance of this
clustered scheduler must use the same scheduler name, specified in quartz.properties . For example:

Name the clustered scheduler.
org.quartz.scheduler.instanceName = myScheduler

myScheduler’s data is shared across the cluster by each of its instances. However, every instance of
myScheduler must also be identified uniquely, and this unique ID is specified in quartz.properties by
the property org.quartz.scheduler.instanceId . This property should have one of the following
values:

<string> – A string value that identifies the scheduler instance running on the Terracotta client that

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

60 of 162 2011-06-03 11:26

org.quartz.simpl.HostnameInstanceIdGeneratorReturns the hostname as the instance ID.

org.quartz.simpl.SystemPropertyInstanceIdGenerator

Returns the value of the
org.quartz.scheduler.instanceId
system property. Available with Quartz 2.0 or
higher.

org.quartz.simpl.SimpleInstanceIdGenerator

Returns an instance ID composed of the local
hostname with the current timestamp appended.
Ensures a unique name. If you do not specify a
generator class, this generator class is used by
default. However, this class is not suitable for use
with Quartz Scheduler Where because the IDs it
generates are not predictable.

Custom
Specify your own implementation of the interface
org.quartz.spi.InstanceIdGenerator .

loaded the containing quartz.properties . Each scheduler instance must have a unique ID value.
AUTO – Delegates the generation of unique instance IDs to the class specified by the property
org.quartz.scheduler.instanceIdGenerator.class .

For example, you can set org.quartz.scheduler.instanceId to equal "node1" on one node,
"node2" on another node, and so on.

If you set org.quartz.scheduler.instanceId equal to "AUTO", then you should specify a generator
class in quartz.properties using the property
org.quartz.scheduler.instanceIdGenerator.class . This property can have one of the
values listed in the following table.

Value Notes

Using SystemPropertyInstanceIdGenerator

org.quartz.simpl.SystemPropertyInstanceIdGenerator is useful in environments that use
initialization scripts or configuration files. For example, you could add the instanceId property to an
application server’s startup script in the form -Dorg.quartz.scheduler.instanceId=node1 ,
where "node1" is the instance ID assigned to the local Quartz Scheduler scheduler. Or it could also be added
to a configuration resource such as an XML file that is used to set up your environment.

The instanceId property values configured for each scheduler instance can be used in
quartzLocality.properties node groups. For example, if you configured instance IDs node1, node2,
and node3, you can use these IDs in node groups:

org.quartz.locality.nodeGroup.group1 = node1, node2
org.quartz.locality.nodeGroup.allNodes = node1, node2, node3

4.2.1d Available Constraints

Quartz Scheduler Where offers the following constraints:

CPU – Minimum number of cores and available threads, maximum amount of load.
Resident keys – Use a node with a specified Enterprise Ehcache distributed cache that has the best
match for the specified keys.
Memory – Minimum amount of memory available.
Node group – A node in the specified node group, as defined in quartzLocality.properties.
OS – A node running the specified operating system.

4.2.1e Quartz Scheduler Where Code Sample

A cluster has Terracotta clients running Quartz Scheduler running on the following hosts: node0, node1,
node2, node3. These hostnames are used as the instance IDs for the Quartz Scheduler scheduler instances
because the following quartz.properties properties are set as shown:

org.quartz.scheduler.instanceId = AUTO

#This sets the hostnames as instance IDs:
org.quartz.scheduler.instanceIdGenerator.class = org.quartz.simpl.HostnameInstanceIdGenerator

quartzLocality.properties has the following configuration:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

61 of 162 2011-06-03 11:26

org.quartz.locality.nodeGroup.slowJobs = node0, node3
org.quartz.locality.nodeGroup.fastJobs = node1, node2
org.quartz.locality.nodeGroup.allNodes = node0, node1, node2, node3

org.quartz.locality.nodeGroup.slowJobs.triggerGroups = slowTriggers
org.quartz.locality.nodeGroup.fastJobs.triggerGroups = fastTriggers

The following code snippet uses Quartz Scheduler Where to create locality-aware jobs and triggers.

// Note the static imports of builder classes that define a Domain Specific Language (DSL).
import static org.quartz.JobBuilder.newJob;
import static org.quartz.TriggerBuilder.newTrigger;
import static org.quartz.locality.LocalityTriggerBuilder.localTrigger;
import static org.quartz.locality.NodeSpecBuilder.node;
import static org.quartz.locality.constraint.NodeGroupConstraint.partOfNodeGroup;

import org.quartz.JobDetail;
import org.quartz.locality.LocalityTrigger;
// Other required imports...

// Using the Quartz Scheduler fluent interface, or the DSL.

// Create a locality-aware job that can be run on any node from nodeGroup "group1" that runs a Linux OS:
LocalityJobDetail jobDetail1 =
 localJob(
 newJob(myJob1.class)
 .withIdentity("myJob1")
 .storeDurably(true)
 .build())
 .where(
 node()
 .is(partOfNodeGroup("group1")
 .is(OsConstraint.LINUX)))
 .build();

// Create a trigger for myJob1:
Trigger trigger1 = newTrigger()
 .forJob("myJob1")
 .withIdentity("myTrigger1")
 .withSchedule(simpleSchedule()
 .withIntervalInSeconds(10)
 .withRepeatCount(2))
 .build();

// Create a second job:
JobDetail jobDetail2 = newJob(myJob2.class)
 .withIdentity("myJob2")
 .storeDurably(true)
 .build();

// Create a locality-aware trigger for myJob2.
LocalityTrigger trigger2 =
 localTrigger(newTrigger()
 .forJob("myJob2")
 .withIdentity("myTrigger2")
 .where(
 node()
 .is(partOfNodeGroup("allNodes"))) // fire on any node in allNodes
 .has(atLeastAvailable(100, MemoryConstraint.Unit.MB)) // with at least 100MB in
free memory.
 .build();

// The following trigger will fire myJob1 on any node in the allNodes group that’s running Linux.
LocalityTrigger trigger3 =
 localTrigger(newTrigger()
 .forJob("myJob1")
 .withIdentity("myTrigger3")
 .where(
 node()
 .is(partOfNodeGroup("allNodes")))
 .build();

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

62 of 162 2011-06-03 11:26

// The following job detail sets up a job (cacheJob) that will be fired on the node where myCache has,
locally, the most keys specified in the collection myKeys.

// After the best match is found, missing elements will be faulted in. If these types of jobs are fired
frequently and a large amount of data must often be faulted in, performance could degrade. To maintain
performance, ensure that most of the targeted data is already cached.

Cache myCache = cacheManager.getEhcache("myCache"); // myCache is already configured, populated, and
distributed.

// A Collection is needed to hold the keys for the elements to be targeted by cacheJob.
// The following assumes String keys.

Set<String> myKeys = new HashSet<String>();

... // Populate myKeys with the keys for the target elements in myCache.

// Create the job that will do work on the target elements.

LocalityJobDetail cacheJobDetail =
 localJob(
 newJob(cacheJob.class)
 .withIdentity("cacheJob")
 .storeDurably(true)
 .build())
 .where(
 node()
 .has(elements(myCache, myKeys)))
 .build();

Notice that trigger3, the third trigger defined, overrode the partOfNodeGroup constraint of myJob1. Where
triggers and jobs have conflicting constraints, the triggers take priority. However, since trigger3 did not
provide an OS constraint, it did not override the OS constraint in myJob1.

NOTE: Unmet Constraints Cause Errors

If a trigger cannot fire because it has constraints that cannot be met by any node, that trigger will go into
an error state. Applications using Quartz Scheduler Where with constraints should be tested under
conditions that simulate those constraints in the cluster.

This example showed how memory and node-group constraints are used to route locality-aware triggers and
jobs. trigger2, for example, is set to fire myJob2 on a node in a specific group ("allNodes") with a specified
minimum amount of free memory. A constraint based on operating system (Linux, Microsoft Windows, Apple
OSX, and Oracle Solaris) is also available.

4.2.1f Locality With the Standard Quartz Scheduler API

It is also possible to add locality to jobs and triggers created with the standard Quartz Scheduler API by
assigning the triggers to a trigger group specified in quartzLocality.properties .

4.2.2 Execution of Jobs
In the general case, exactly one Quartz Scheduler node, or Terracotta client, executes a clustered job when
that job's trigger fires. This can be any of the nodes that have the job. If a job repeats, it may be executed
by any of the nodes that have it exactly once per the interval configured. It is not possible to predict which
node will execute the job.

With Quartz Scheduler Where, a job can be assigned to a specific node based on certain criteria.

4.2.3 Working With JobDataMaps
JobDataMaps contain data that may be useful to jobs at execution time. A JobDataMap is stored at the time
its associated job is added to a scheduler.

4.2.3a Updating a JobDataMap

If the stored job is stateful (implements the StatefulJob interface), and the contents of its JobDataMap is
updated (from within the job) during execution, then a new copy of the JobDataMap is stored when the job
completes.

If the job not stateful, then it must be explicitly stored again with the changed JobDataMap to update the

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

63 of 162 2011-06-03 11:26

stored copy of the job’s JobDataMap. This is because TerracottaJobStore contains deep copies of
JobDataMap objects and does not reflect updates made after a JobDataMap is stored.

4.2.3b Best Practices for Storing Objects in a JobDataMap

Because TerracottaJobStore contains deep copies of JobDataMap objects, application code should not have
references to mutable JobDataMap objects. If an application does rely on these references, there is risk of
getting stale data as the mutable objects in a deep copy do not reflect changes made to the JobDataMap
after it is stored.

To maximize performance and ensure long-term compatibility, place only Strings and primitives in
JobDataMap. JobDataMap objects are serialized and prone to class-versioning issues. Putting complex objects
into a clustered JobDataMap could also introduce other errors that are avoided with Strings and primitives.

4.2.4 Cluster Data Safety
By default, Terracotta clients (application servers) do not block to wait for a "transaction received"
acknowledgement from a Terracotta server when writing data transactions to the cluster. This asynchronous
write mode translates into better performance in a Terracotta cluster.

However, the option to maximize data safety by requiring that acknowledgement is available using the
following Quartz configuration property:

org.quartz.jobStore.synchronousWrite = true

When synchronousWrite is set to "true", a client blocks with each transaction written to the cluster until an
acknowledgement is received from a Terracotta server. This ensures that the transaction is committed in the
cluster before the client continues work.

4.2.5 Effective Scaling Strategies
Clustering Quartz schedulers is an effective approach to distributing load over a number of nodes if jobs are
long-running or are CPU intensive (or both). Distributing the jobs lessens the burden on system resources. In
this case, and with a small set of jobs, lock contention is usually infrequent.

However, using a single scheduler forces the use of a cluster-wide lock, a pattern that degrades performance
as you add more clients. The cost of this cluster-wide lock becomes more evident if a large number of
short-lived jobs are being fired by a single scheduler. In this case, consider partitioning the set of jobs across
more than one scheduler.

If you do employ multiple schedulers, they can be run on every node, striping the cluster-wide locks. This is
an effective way to reduce lock contention while adding scale.

If you intend to scale, measure your cluster’s throughput in a test environment to discover the optimal
number of schedulers and nodes.

5 Clustering Web Applications with Terracotta Web Sessions

This document shows how to cluster web applications with Terracotta Web Sessions.

Terracotta clusters web applications based on a number of popular web containers (or application servers).
See Platform Support for certified containers and supported versions. Terracotta Web Sessions provides a
number of advantages over container session-replication schemes, including the following:

No Loss of Data – Robust session-data persistence backed by the Terracotta Server Array, including
failover with no data loss.
Consistent Data – Consistency guarantees across the entire cluster.
No Size Limit – Unlimited scale-out based on the Terracotta Server Array.
Memory Efficient – No consumption of heap on clients for the purpose of backing up session data.

To install Web Sessions, see Web Sessions Installation.

5.0.1 Architecture of a Terracotta Cluster
The following diagram shows the architecture of a typical Terracotta-enabled web application.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

64 of 162 2011-06-03 11:26

The load balancer parcels out HTTP requests from the Internet to each application server. To maximize the
locality of reference of the clustered HTTP session data, the load balancer uses HTTP session affinity so all
requests corresponding to the same HTTP session are routed to the same application server. However, with a
Terracotta-enabled web application, any application server can process any request. Terracotta Web
Sessions clusters the sessions, allowing sessions to survive node hops and failures.

The application servers run both your web application and the Terracotta client software, and are called
"clients" in a Terracotta cluster. As many application servers may be deployed as needed to handle your site
load.

For more information on sizing and deployment concerns, see the Deployment Guide and the Operations
Guide .

A Terracotta cluster can be deployed with one or more Terracotta servers, which act as the data store for
HTTP session data and coordinate access by the application servers to that session data. For more
information on setting up a Terracotta cluster, see Configuring Terracotta Clusters For High Availability and
Terracotta Server Arrays.

5.1 Web Sessions Installation
This document shows you how to cluster web sessions without the requirements imposed by Terracotta DSO,
such as cluster-wide locking, class instrumentation, and class portability. If you must use DSO, see Terracotta
DSO Installation.

5.1.1 Step 1: Requirements

JDK 1.5 or higher.
Terracotta 3.5.0 or higher
Download the kit and run the installer on the machine that will host the Terracotta server. For use
with WebSphere, you must have kit version 3.2.1_2 or higher.
All clustered objects must be serializable.
If you cannot use Serializable classes, you must use the custom web-sessions installation (see
Terracotta DSO Installation). Clustering non-serializable classes is not supported with the express
installation.
An application server listed in Step 2: Install the Terracotta Sessions JAR.

5.1.2 Step 2: Install the Terracotta Sessions JAR
For guaranteed compatibility, use the JAR files included with the Terracotta kit you are installing. Mixing

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

65 of 162 2011-06-03 11:26

JBoss AS (earlier than 6.0) <jboss install dir>/lib

JBoss AS 6.0 <jboss install dir>/common/lib

Jetty WEB-INF/lib

Tomcat 5.0 and 5.5 $CATALINA_HOME/server/lib

Tomcat 6.0 $CATALINA_HOME/lib

WebLogic WEB-INF/lib

WebSphere WEB-INF/lib

with older components may cause errors or unexpected behavior.

To cluster your application’s web sessions, add the following JAR file to your application's classpath:

${TERRACOTTA_HOME}/sessions/terracotta-session-<version>.jar
<version> is the current version of the Terracotta Sessions JAR. For use with WebSphere, you must
have Terracotta Sessions JAR version 1.0.2 or higher.
${TERRACOTTA_HOME}/common/terracotta-toolkit-<API-version>-runtime-
ee-<version>.jar
The Terracotta Toolkit JAR contains the Terracotta client libraries. <API-version> refers to the
Terracotta Toolkit API version. <version> is the current version of the Terracotta Toolkit JAR.

If you are using the open-source edition of the Terracotta kit, no JAR files will have "-ee-" as part of their
name.

See the following table on suggestions on where to add the Terracotta Sessions JAR based on application
server.

Application Server Suggested Location for Terracotta Sessions JAR File

NOTE: Supported Application Servers

The table above lists the only application servers supported by the express installation. See Platform
Support to obtain the latest versions for the listed application servers.

5.1.3 Step 3: Configure Web-Session Clustering
Terracotta servers, and Terracotta clients running on the application servers in the cluster, are configured
with a Terracotta configuration file, tc-config.xml by default. Servers not started with a specified
configuration use a default configuration.

To add Terracotta clustering to your application, you must specify how Terracotta clients get their
configuration by including the source in web.xml or context.xml .

Find the configuration to use for your application server in the sections below.

5.1.3a Jetty, WebLogic, and WebSphere

Add the following configuration snippet to web.xml :

<filter>
 <filter-name>terracotta</filter-name>
 <!-- The filter class is specific to the application server. -->
 <filter-class>org.terracotta.session.{container-specific-class}</filter-class>
 <init-param>
 <param-name>tcConfigUrl</param-name>
 <!-- <init-param> of type tcConfigUrl has a <param-value> element containing the URL or filepath
(for example, /lib/tc-config.xml) to tc-config.xml. If the Terracotta configuration source changes at a
later time, it must be updated in configuration. -->
 <param-value>localhost:9510</param-value>
 </init-param>
</filter>
<filter-mapping>
 <!-- Must match filter name from above. -->
 <filter-name>terracotta</filter-name>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

66 of 162 2011-06-03 11:26

Jetty 6.1 org.terracotta.session.TerracottaJetty61xSessionFil

WebLogic 9 org.terracotta.session.TerracottaWeblogic9xSessionF

WebLogic 10 org.terracotta.session.TerracottaWeblogic10xSession

WebSphere 6.1 org.terracotta.session.TerracottaWebsphere61xSessionFilter

JBoss Application Server 4.0 org.terracotta.session.TerracottaJboss40xSessionVal

JBoss Application Server 4.2 org.terracotta.session.TerracottaJboss42xSessionVal

JBoss Application Server 5.1 org.terracotta.session.TerracottaJboss51xSessionVal

JBoss Application Server 6.0 org.terracotta.session.TerracottaJboss60xSessionVal

Tomcat 5.0 org.terracotta.session.TerracottaTomcat50xSessionVa

Tomcat 5.5 org.terracotta.session.TerracottaTomcat55xSessionVa

 <url-pattern>/*</url-pattern>
 <!-- Enable all available dispatchers. -->
 <dispatcher>ERROR</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

<filter-name> can contain a string of your choice. However, the value of <filter>/<filter-name> must match
<filter-mapping>/<filter-name>.

Choose the appropriate value for <filter-class> from the following table.

Container Value of <filter-class>

If you have customized a Terracotta configuration file and want to include its contents rather than providing
an URL, use an <init-param> of type tcConfig :

<init-param>
 <param-name>tcConfig</param-name>
 <param-value><tc:tc-config ... </tc:tc-config></param-value>
</init-param>

Use URL-safe codes (also known as "URL escaping") or HTML names for all special characters such as angle
brackets ("<" and ">").

Ensure that the Terracotta filter is the first <filter> element listed in web.xml . Filters processed ahead of
the Terracotta valve may disrupt its processing.

web.xml should be in /WEB-INF if you are using a WAR file.

5.1.3b JBoss AS and Tomcat

Add the following to context.xml :

<Valve className="org.terracotta.session.{container-specific-class}" tcConfigUrl="localhost:9510">

where tcConfigUrl contains an URL or file path (for example, tcConfigURL="/lib
/tc-config.xml") to tc-config.xml . If the Terracotta configuration source changes at a later
time, it must be updated in configuration.

If you have customized a Terracotta configuration file and want to include its contents rather than providing
an URL, replace tcConfigUrl with tcConfig:

<Valve className="org.terracotta.session.{container-specific-class}" tcConfig="<tc:tc-config ...
</tc:tc-config>">

Use URL-safe codes (also known as "URL escaping") or HTML names for all special characters such as angle
brackets ("<" and ">"). Choose the appropriate value of className from the following table.

Container Value of className

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

67 of 162 2011-06-03 11:26

Tomcat 6.0 org.terracotta.session.TerracottaTomcat60xSessionVa

For example, to use Tomcat 6.0, the content of context.xml should be similar to the following:

<Context>
<Valve className="org.terracotta.session.TerracottaTomcat60xSessionValve" tcConfigUrl="localhost:9510"/>
</Context>

Ensure that the Terracotta valve is the first <Valve> element listed in context.xml . Valves processed
ahead of the Terracotta valve may disrupt its processing.

NOTE: Using Tomcat’s Built-In Authentication

If you use one of the authenticator valves available with Tomcat, you may encounter an
UnsupportedOperationException when running with Terracotta clustering. With Tomcat 5.5 and
above, users can prevent this error by disabling changeSessionIdOnAuthentication . For
example:
<Valve changeSessionIdOnAuthentication="false"
className="org.apache.catalina.authenticator.BasicAuthenticator"/>

If you are using a WAR file, context.xml should be in /META-INF for Tomcat and in /WEB-INF for
JBoss Application Server.

5.1.4 Step 4: Start the Cluster

1. Start the Terracotta server:

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.bat

2. Start the application servers.
3. Start the Terracotta Developer Console:

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/dev-console.sh &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\dev-console.bat

4. Connect to the Terracotta cluster.
Click Connect... in the Terracotta Developer Console.

5. Click the Topology node in the cluster navigation window to see the Terracotta servers and clients
(application servers) in the Terracotta cluster.
Your console should have a similar appearance to the following figure.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

68 of 162 2011-06-03 11:26

5.1.5 Step 5: Edit the Terracotta Configuration
This step shows you how to run clients and servers on separate machines and add failover (High Availability).
You will expand the Terracotta cluster and add High Availability by doing the following:

Moving the Terracotta server to its own machine
Creating a cluster with multiple Terracotta servers
Creating multiple application nodes

These tasks bring your cluster closer to a production architecture.

5.1.5a Procedure:

1. Shut down the Terracotta cluster.
2. Create a Terracotta configuration file called tc-config.xml with contents similar to the following:

<?xml version="1.0" encoding="UTF-8"?>
<!-- All content copyright Terracotta, Inc., unless otherwise indicated. All rights reserved. -->
<tc:tc-config xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-5.xsd"
xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <servers>
 <!-- Sets where the Terracotta server can be found. Replace the value of host with the
server's IP address. -->
 <server host="server.1.ip.address" name="Server1">
 <data>%(user.home)/terracotta/server-data</data>
 <logs>%(user.home)/terracotta/server-logs</logs>
 </server>
 <!-- If using a standby Terracotta server, also referred to as an ACTIVE-PASSIVE configuration, add
the second server here. -->
 <server host="server.2.ip.address" name="Server2">
 <data>%(user.home)/terracotta/server-data</data>
 <logs>%(user.home)/terracotta/server-logs</logs>
 </server>
<!-- If using more than one server, add an <ha> section. -->
 <ha>
 <mode>networked-active-passive</mode>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

69 of 162 2011-06-03 11:26

 <networked-active-passive>
 <election-time>5</election-time>
 </networked-active-passive>
 </ha>
 </servers>
 <!-- Sets where the generated client logs are saved on clients. -->
 <clients>
 <logs>%(user.home)/terracotta/client-logs</logs>
 </clients>
</tc:tc-config>

3. Install Terracotta 3.5.0 on a separate machine for each server you configure in tc-config.xml .
4. Copy the tc-config.xml to a location accessible to the Terracotta servers.
5. Perform Step 2: Install the Terracotta Sessions JAR on each application node you want to run in the

cluster.
Be sure to install your application and any application servers on each node.

6. Edit web.xml or context.xml on each application server to list both Terracotta servers:

<param-value>server.1.ip.address:9510,server.2.ip.address:9510</param-value>

or

tcConfigUrl="server.1.ip.address:9510,server.2.ip.address:9510"

7. Start the Terracotta server in the following way, replacing "Server1" with the name you gave your
server in tc-config.xml :

UNIX/Linux
 [PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh -f <path/to/tc-config.xml> -n Server1 &

Microsoft Windows
 [PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.bat -f <path\to\tc-config.xml> -n Server1 &

If you configured a second server, start that server in the same way on its machine, entering its name
after the -n flag. The second server to start up becomes the "hot" standby, or PASSIVE. Any other
servers you configured will also start up as standby servers.

8. Start all application servers.
9. Start the Terracotta Developer Console and view the cluster.

5.1.6 Step 6: Learn More
To learn more about working with a Terracotta cluster, see the following documents:

6.1 Working with Terracotta Configuration Files – Explains how tc-config.xml is propagated and
loaded in a Terracotta cluster in different environments.
6.3 Terracotta Server Arrays – Shows how to design Terracotta clusters that are fault-tolerant,
maintain data safety, and provide uninterrupted uptime.
6.2 Configuring Terracotta Clusters For High Availability – Defines High Availability configuration
properties and explains how to apply them.
8.1 Terracotta Developer Console – Provides visibility into and control of caches.

5.2 Web Sessions Reference
This section contains further information on configuring and troubleshooting Terracotta Web Sessions.

5.2.1 Additional Configuration Options
While Terracotta Web Sessions is designed for optimum performance with the configuration you set at
installation, in some cases it may be necessary to use the configuration options described in the following
sections.

5.2.1a Session Locking

By default, session locking is off in standard (non-DSO) Terracotta Web Sessions. If your application requires
disabling concurrent requests in sessions, you can enable session locking.

To enable session locking in filter-based configuration, add an <init-param> block as follows:

<filter>
 <filter-name>terracotta-filter</filter-name>
 <filter-class>org.terracotta.session.TerracottaContainerSpecificSessionFilter</filter-class>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

70 of 162 2011-06-03 11:26

 <init-param>
 <param-name>tcConfigUrl</param-name>
 <param-value>localhost:9510</param-value>
 </init-param>
 <init-param>
 <param-name>sessionLocking</param-name>
 <param-value>true</param-value>
 </init-param>
</filter>

To enable session locking in Valve-based configuration, add a sessionLocking attribute as follows:

<Valve className="com.terracotta.TerracottaContainerSpecificSessionValve" tcConfigUrl="localhost:9510"
sessionLocking="true"/>

If you enable session locking, see 5.2.2d Deadlocks When Session Locking Is Enabled.

5.2.1b Synchronous Writes

Synchronous write locks provide an extra layer of data protection by having a client node wait until it
receives acknowledgement from the Terracotta Server Array that the changes have been committed. The
client releases the write lock after receiving the acknowledgement. Enabling synchronous write locks can
substantially raise latency rates, thus degrading cluster performance .

To enable synchronous writes in filter-based configuration, add an <init-param> block as follows:

<filter>
 <filter-name>terracotta-filter</filter-name>
 <filter-class>org.terracotta.session.TerracottaContainerSpecificSessionFilter</filter-class>
 <init-param>
 <param-name>tcConfigUrl</param-name>
 <param-value>localhost:9510</param-value>
 </init-param>
 <init-param>
 <param-name>synchronousWrite</param-name>
 <param-value>true</param-value>
 </init-param>
</filter>

To enable synchronous writes in Valve-based configuration, add a synchronousWrite attribute as
follows:

<Valve className="com.terracotta.TerracottaContainerSpecificSessionValve" tcConfigUrl="localhost:9510"
synchronousWrite="true"/>

5.2.2 Troubleshooting
The following sections summarize common issues than can be encountered when clustering web sessions.

5.2.2a Sessions Time Out Unexpectedly

Sessions that are set to expire after a certain time instead seem to expire at unexpected times, and sooner
than expected. This problem can occur when sessions hop between nodes that do not have the same system
time. A node that receives a request for a session that originated on a different node still checks local time
to validate the session, not the time on the original node. Adding the Network Time Protocol (NTP) to all
nodes can help avoid system-time drift. However, note that having nodes set to different time zones can
cause this problem, even with NTP.

This problem can also cause sessions to time out later than expected, although this variation can have many
other causes.

5.2.2b Changes Not Replicated

Terracotta Web Sessions must run in serialization mode. Serialization mode is not an option as it is in the DSO
version of Web Sessions. In serialization mode, sessions are still clustered, but your application must now
follow the standard servlet convention on using setAttribute() for mutable objects in replicated
sessions.

5.2.2c Tomcat 5.5 Messages Appear With Tomcat 6 Installation

If you are running Tomcat 6, you may see references to Tomcat 5.5 in the Terracotta log. This occurs
because Terracotta Web Sessions run with Tomcat 6 reuses some classes from the Tomcat 5.5 Terracotta
Integration Module.

5.2.2d Deadlocks When Session Locking Is Enabled

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

71 of 162 2011-06-03 11:26

In some containers or frameworks, it is possible to see deadlocks when session locking is in effect. This
happens when an external request is made from inside the locked session to access that same session. This
type of request fails because the session is locked.

5.2.2e Events Not Received on Node

Most Servlet spec-defined events will work with Terracotta clustering, but the events are generated on the
node where they occur. For example, if a session is created one node and destroyed on a second node, the
event is received on the second node, not the first node.

6 The Terracotta Server Array

The Terracotta Server Array provides the platform for Terracotta products and the backbone for Terracotta
clusters. Terracotta Server Array documentation describes how to:

Use Terracotta configuration files
Set up High Availability
Work with different cluster architectures to meet failover, persistence, and scaling needs
Improve performance using BigMemory
Add cluster security
Manage cluster topology

Start with learning about Terracotta configuration files and setting up High Availability, then see the
architecture section to find a cluster setup that meets your needs. Once you have a test cluster running, add
BigMemory and measure performance improvement.

6.1 Working with Terracotta Configuration Files
Terracotta XML configuration files set the characteristics and behavior of Terracotta server instances and
Terracotta clients. The easiest way to create your own Terracotta configuration file is by editing a copy of
one of the sample configuration files available with the Terracotta kit.

Where you locate the Terracotta configuration file, or how your Terracotta server and client configurations
are loaded, depends on the stage your project is at and on its architecture. This document covers the
following cases:

Development stage, 1 Terracotta server
Development stage, 2 Terracotta servers
Deployment stage

This document discusses cluster configuration in the Terracotta Server Array. To learn more about the
Terracotta server instances, see Terracotta Server Arrays.

For a comprehensive and fully annotated configuration file, see config-samples/tc-config-
express-reference.xml in the Terracotta kit.

6.1.1 How Terracotta Servers Get Configured
At startup, Terracotta servers load their configuration from one of the following sources:

A default configuration included with the Terracotta kit
A local or remote XML file

These sources are explored below.

6.1.1a Default Configuration

If no configuration file is specified and no tc-config.xml exists in the directory in which the Terracotta
instance is started, then default configuration values are used.

6.1.1b Local XML File (Default)

The file tc-config.xml is used by default if it is located in the directory in which a Terracotta instance is
started and no configuration file is explicitly specified.

6.1.1c Local or Remote Configuration File

You can explicitly specify a configuration file by passing the -f option to the script used to start a Terracotta
server. For example, to start a Terracotta server on UNIX/Linux using the provided script, enter:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

72 of 162 2011-06-03 11:26

start-tc-server.sh -f <path_to_configuration_file>

where <path_to_configuration_file> can be a URL or a relative directory path. In Microsoft Windows, use
start-tc-server.bat .

6.1.2 How Terracotta Clients Get Configured
At startup, Terracotta clients load their configuration from one of the following sources:

Local or Remote XML File
Terracotta Server
An Ehcache configuration file (using the <terracottaConfig> element) used with Enterprise Ehcache
and Enterprise Ehcache for Hibernate.
A Quartz properties file (using the org.quartz.jobStore.tcConfigUrl property) used with
Quartz Scheduler.
A Filter (in web.xml) or Valve (in context.xml) elements used with containers and Terracotta
Sessions.
The client constructor (TerracottaClient()) used when a client is instantiated
programmatically using the Terracotta Toolkit.

Terracotta clients can load customized configuration files to specify <client> and <application>
configuration. However, the <servers> block of every client in a cluster must match the <servers> block of
the servers in the cluster. If there is a mismatch, the client will emit an error and fail to complete its startup.

NOTE: Error with Matching Configuration Files

On startup, a Terracotta client may emit a configuration-mismatch error if its <servers> block does not
match that of the server it connects to. However, under certain circumstances, this error may occur even if
the <servers> blocks appear to match.

The following suggestions may help prevent this error:

- Use -Djava.net.preferIPv4Stack consistently. If it is explicitly set on the client, be sure to
explicitly set it on the server.

- Ensure etc/hosts file does not contain multiple entries for hosts running Terracotta servers.

- Ensure that DNS always returns the same address for hosts running Terracotta servers.

6.1.2a Local or Remote XML File

See the discussion for local XML file (default) in How Terracotta Servers Get Configured.

To specify a configuration file for a Terracotta client, see Clients in Development.

NOTE: Fetching Configuration from the Server

On startup, Terracotta clients must fetch certain configuration properties from a Terracotta server. A client
loading its own configuration will attempt to connect to the Terracotta servers named in that configuration.
If none of the servers named in that configuration are available, the client cannot complete its startup.

6.1.2b Terracotta Server

Terracotta clients can load configuration from a running Terracotta server by specifying its hostname and
DSO port (see Clients in Production).

6.1.3 Configuration in a Development Environment
In a development environment, using a different configuration file for each Terracotta client facilitates the
testing and tuning of configuration options. This is an efficient and effective way to gain valuable insight on
best practices for clustering your application with Terracotta DSO.

6.1.3a One-Server Setup in Development

For one Terracotta server, the default configuration is adequate.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

73 of 162 2011-06-03 11:26

To use the default configuration settings, start your Terracotta server using the start-tc-server.sh (or
start-tc-server.bat) script in a directory that does not contain the file tc-config.xml :

[PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.sh

To specify a configuration file, use one of the approaches discussed in How Terracotta Servers Get
Configured.

6.1.3b Two-Server Setup in Development

A two-server setup, sometimes referred to as an
active-passive setup, has one active server
instance and one "hot standby" (the passive, or
backup) that should load the same configuration
file.

The configuration file loaded by the Terracotta
servers must define each server separately using
<server> elements. For example:

<tc:tc-config
xsi:schemaLocation="http://www.terracotta.org
/schema/terracotta-5.xsd"
xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
...
<!-- Use an IP address or a resolvable host
name for the host attribute. -->
 <server host="123.456.7.890" name="Server1">
...
 <server host="myResolvableHostName"
name="Server2">
...
</tc:tc-config>

Assuming Server1 is the active server, using the same configuration allows Server2 to be the hot standby and
maintain the environment in case of failover. If you are running both Terracotta servers on the same host,
the only port that has to be specified in configuration is the <dso-port>; the values for <jmx-port> and
<l2-group-port> are filled in automatically.

NOTE: Running Two Servers on the Same Host

If you are running the servers on the same machine, some elements in the <server> section, such as
<dso-port> and <server-logs>, must have different values for each server.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

74 of 162 2011-06-03 11:26

Server Names for Startup

With multiple <server> elements, the name attribute may be required to avoid ambiguity when starting a
server:

start-tc-server.sh -n Server1 -f <path_to_configuration_file>

In Microsoft Windows, use start-tc-server.bat .

For example, if you are running Terracotta server instances on the same host, you must specify the name
attribute to set an unambiguous target for the script.

However, if you are starting Terracotta server instances in an unambiguous setup, specifying the server name
is optional. For example, if the Terracotta configuration file specifies different IP addresses for each server,
the script assumes that the server with the IP address corresponding to the local IP address is the target.

6.1.3c Clients in Development

You can explicitly specify a client's Terracotta configuration file by passing -Dtc.config=path/to
/my-tc-config.xml when you start your application with the Terracotta client.

DSO users can use the dso-java.sh script (or dso-java.bat for Windows):

dso-java.sh -Dtc.config=path/to/my-tc-config.xml -cp classes myApp.class.Main

where myApp.class.Main is the class used to launch the application you want to cluster with Terracotta.
In Microsoft Windows, use dso-java.bat .

If tc-config.xml exists in the directory in which you run dso-java, it can be loaded without
-Dtc.config .

TIP: Avoiding the dso-java Script

If you do not require DSO, do not use the dso-java script. Terracotta products provide simple configuration
setups.

If you are using DSO, you may want to avoid using the dso-java script and start your application with the
Terracotta client using your own scripts. See Setting Up the Terracotta Environment.

6.1.4 Configuration in a Production Environment

For an efficient production environment, it's
recommended that you maintain one Terracotta
configuration file. That file can be loaded by the
Terracotta server (or servers) and pushed out to
clients. While this is an optional approach, it's an
effective way to centralize and decrease
maintenance.

If your Terracotta configuration file uses "%i" for
the hostname attribute in its server element,
change it to the actual hostname in production.
For example, if in development you used the
following:

<server host="%i" name="Server1">

and the production host's hostname is
myHostName, then change the host attribute to
the myHostName:

<server host="myHostName" name="Server1">

6.1.4a Clients in Production

For clients in production, you can set up the Terracotta environment before launching your application. DSO
users can use the dso-java script.

Setting Up the Terracotta Environment

To start your application with the Terracotta client using your own scripts, first set the following environment
variables:

TC_INSTALL_DIR=<path_to_local_Terracotta_home>
TC_CONFIG_PATH=<path/to/tc-config.xml>

or

TC_CONFIG_PATH=<server_host>:<dso-port>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

75 of 162 2011-06-03 11:26

where <server_host>:<dso-port> points to the running Terracotta server. The specified Terracotta
server will push its configuration to the Terracotta client.

If more than one Terracotta server is available, enter them in a comma-separated list:

TC_CONFIG_PATH=<server_host1>:<dso-port>,<server_host2>:<dso-port>

If <server_host1> is unavailable, <server_host2> is used.

If using DSO, complete setting up the Terracotta client's environment by running the following:

UNIX/Linux
[PROMPT] ${TC_INSTALL_DIR}/platform/bin/dso-env.sh -q
[PROMPT] export JAVA_OPTS="$TC_JAVA_OPTS $JAVA_OPTS"

Microsoft Windows
[PROMPT] %TC_INSTALL_DIR%\bin\dso-env.bat -q
[PROMPT] set JAVA_OPTS=%TC_JAVA_OPTS%;%JAVA_OPTS%

Before starting up your application, confirm that the value of JAVA_OPTS is correct.

Terracotta Products

Terracotta products without DSO (also called the "express" installation) can set a configuration path using
their own configuration files.

For Enterprise Ehcache and Enterprise Ehcache for Hibernate, use the <terracottaConfig> element in the
Ehcache configuration file (ehcache.xml by default):

<terracottaConfig url="localhost:9510" />

For Quartz, use the org.quartz.jobStore.tcConfigUrl property in the Quartz properties file (
quartz.properties by default):

org.quartz.jobStore.tcConfigUrl = /myPath/to/tc-config.xml

For Terracotta Web Sessions, use the appropriate elements in web.xml or context.xml (see Web
Sessions Installation).

6.1.5 Binding Ports to Interfaces
Normally, the ports you specify for a server in the Terracotta configuration are bound to the interface
associated with the host specified for that server. For example, if the server is configured with the IP address
"12.345.678.8" (or a hostname with that address), the server’s ports are bound to that same interface:

<server host="12.345.678.8" name="Server1">
 ...
 <dso-port>9510</dso-port>
 <jmx-port>9520</jmx-port>
 <l2-group-port>9530</l2-group-port>
</server>

However, in certain situations it may be necessary to specify a different interface for one or more of a
server’s ports. This is done using the bind attribute, which allows you bind a port to a different interface.
For example, a JMX client may only be able connect to a certain interface on a host. The following
configuration shows a JMX port bound to an interface different than the host’s:

<server host="12.345.678.8" name="Server1">
 ...
 <dso-port>9510</dso-port>
 <jmx-port bind="12.345.678.9">9520</jmx-port>
 <l2-group-port>9530</l2-group-port>
</server>

6.1.6 terracotta.xml (DSO only)
The file terracotta.xml , which contains a fragment of Terracotta configuration, can be part of a
Terracotta integration module (TIM). When the TIM is loaded at runtime, terracotta.xml is inserted into
the client configuration. For more information on TIMs and terracotta.xml , see the Terracotta
Integration Modules Manual .

NOTE: Element Hierarchy

If the use of terracotta.xml introduces duplicate elements into the client configuration, the value of
the last element parsed is used. The last element parsed appears last in order in the configuration file.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

76 of 162 2011-06-03 11:26

6.1.7 Which Configuration?
Each server and client must maintain separate log directories. By default, server logs are written to
%(user.home)/terracotta/server-logs and client logs to %(user.home)/terracotta
/client-logs .

To find out which configuration a server or client is using, search its logs for an INFO message containing the
text "Configuration loaded from".

6.2 Configuring Terracotta Clusters For High Availability
High Availability (HA) is an implementation designed to maintain uptime and access to services even during
component overloads and failures. Terracotta clusters offer simple and scalable HA implementations based
on the Terracotta Server Array (see Terracotta Server Arrays for more information).

The main features of a Terracotta HA architecture include:

Instant failover using a hot standby or multiple active servers – provides continuous uptime and services
Configurable automatic internode monitoring – Terracotta HealthChecker
Automatic permanent storage of all current shared (in-memory) data – available to all server instances
(no loss of application state)
Automatic reconnection of temporarily disconnected server instances and clients – restores hot
standbys without operator intervention, allows "lost" clients to reconnect

TIP: Nomenclature

This document may refer to a Terracotta server instance as L2, and a Terracotta client (the node
running your application) as L1. These are the shorthand references used in Terracotta configuration
files.

To learn about reconnecting Enterprise Ehcache clients that have been disconnected from their
cluster, see 2.3.7a Using Rejoin to Automatically Reconnect Terracotta Clients.

It is important to thoroughly test any High Availability setup before going to production. Suggestions for
testing High Availability configurations are provided in this document .

6.2.1 Common Causes of Failures in a Cluster
Failures in a cluster include L1s being ejected, standby L2s becoming active and attempting to take over the
cluster while the original active L2 is still functional, long pauses in cluster operations, and even complete
cluster failure.

The most common causes of failures in a cluster are interruptions in the network and long Java GC cycles on
particular nodes. Tuning the HealthChecker and reconnect features can reduce or eliminate these two
problems. However, additional actions should also be considered.

Sporadic disruptions in network connections between L2s and between L2s and L1s can be difficult to track
down. Be sure to thoroughly test all network segments connecting the nodes in a cluster, and also test
network hardware. Check for speed, noise, reliability, and other applications that grab bandwidth.

Long GC cycles can also be helped by the following:

Tuning Java GC to work more efficiently with the clustered application.
Refactoring clustered applications that unnecessarily create too much garbage can also help.
Ensuring that the problem node has enough memory allocated to the heap.

TIP: Using BigMemory to Alleviate GC Slowdowns

Terracotta BigMemory allows L2s to use memory outside of the Java object heap. See Improving
Server Performance With BigMemory.

Two other sources of failures in a cluster are disks that are nearly full or are running slowly, and other
applications that compete for a node’s resources.

6.2.2 Basic High-Availability Configuration
A basic high-availability configuration has the following components:

Two or More Terracotta Server Instances
See Terracotta Server Arrays on how to set up a cluster with multiple Terracotta server instances.
Active-Passive Mode
The <ha> section in the Terracotta configuration file should indicate the mode as networked-active-
passive to allow for an active server instance and one or more "hot standby" (backup) server instances.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

77 of 162 2011-06-03 11:26

The <networked-active-passive> subsection has a configurable parameter called <election-time>
whose value is given in seconds. <election-time>, which sets the duration for elections to elect an
active server, is a factor in network latency and server load. The default value is 5 seconds:

<?xml version="1.0" encoding="UTF-8" ?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-5.xsd">
 <servers>
...
 <ha>
 <mode>networked-active-passive</mode>
 <networked-active-passive>
 <election-time>5</election-time>
 </networked-active-passive>
 </ha>
 </servers>
 ...
</tc:tc-config>

NOTE: Servers Should Not Share Data Directories

When using networked-active-passive mode, Terracotta server instances must not share data directories.
Each server's <data> element should point to a different and preferably local data directory.

Server-Server Reconnection
A reconnection mechanism can be enabled to restore lost connections between active and passive
Terracotta server instances. See Automatic Server Instance Reconnect for more information.
Server-Client Reconnection
A reconnection mechanism can be enabled to restore lost connections between Terracotta clients and
server instances. See Automatic Client Reconnect for more information.

For more information on Terracotta configuration files, see:

Working with Terracotta Configuration Files
Configuration Guide and Reference (Servers Configuration Section)

6.2.3 High-Availability Features
The following high-availability features can be used to extend the reliability of a Terracotta cluster. These
features are controlled using properties set with the <tc-properties> section at the beginning of the
Terracotta configuration file:

<?xml version="1.0" encoding="UTF-8"?>
<!-- All content copyright Terracotta, Inc., unless otherwise indicated. All rights reserved. -->
<tc:tc-config xmlns:tc="http://www.terracotta.org/config" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-5.xsd">

 <tc-properties>
 <property name="some.property.name" value="true"/>
 <property name="some.other.property.name" value="true"/>
 <property name="still.another.property.name" value="1024"/>
 </tc-properties>

<!-- The rest of the Terracotta configuration goes here. -->

</tc:tc-config>

See the section Overriding tc.properties in Configuration Guide and Reference for more information.

6.2.3a HealthChecker

HealthChecker is a connection monitor similar to TCP keep-alive. HealthChecker functions between
Terracotta server instances (in High Availability environments), and between Terracotta sever instances and
clients. Using HealthChecker, Terracotta nodes can determine if peer nodes are reachable, up, or in a GC
operation. If a peer node is unreachable or down, a Terracotta node using HealthChecker can take
corrective action. HealthChecker is on by default.

You configure HealthChecker using certain Terracotta properties, which are grouped into three different
categories:

Terracotta server instance -> Terracotta client
Terracotta Server -> Terracotta Server (HA setup only)

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

78 of 162 2011-06-03 11:26

l2.healthcheck.l1.ping.enabled

l2.healthcheck.l2.ping.enabled

l1.healthcheck.l2.ping.enabled

Enables (True) or disables (False) ping probes
(tests). Ping probes are high-level attempts to
gauge the ability of a remote node to respond to
requests and is useful for determining if temporary
inactivity or problems are responsible for the
node’s silence. Ping probes may fail due to long GC
cycles on the remote node.

l2.healthcheck.l1.ping.idletime

l2.healthcheck.l2.ping.idletime

l1.healthcheck.l2.ping.idletime

The maximum time (in milliseconds) that a node
can be silent (have no network traffic) before
HealthChecker begins a ping probe to determine if
the node is alive.

l2.healthcheck.l1.ping.interval

l2.healthcheck.l2.ping.interval

l1.healthcheck.l2.ping.interval

If no response is received to a ping probe, the time
(in milliseconds) that HealthChecker waits between
retries.

l2.healthcheck.l1.ping.probes

l2.healthcheck.l2.ping.probes

l1.healthcheck.l2.ping.probes

If no response is received to a ping probe, the
maximum number (integer) of retries
HealthChecker can attempt.

l2.healthcheck.l1.socketConnect

l2.healthcheck.l2.socketConnect

l1.healthcheck.l2.socketConnect

Enables (True) or disables (False) socket-
connection tests. This is a low-level connection
that determines if the remote node is reachable
and can access the network. Socket connections
are not affected by GC cycles.

l2.healthcheck.l1.socketConnectTimeout

l2.healthcheck.l2.socketConnectTimeout

l1.healthcheck.l2.socketConnectTimeout

A multiplier (integer) to determine the maximum
amount of time that a remote node has to respond
before HealthChecker concludes that the node is
dead (regardless of previous successful socket
connections). The time is determined by
multiplying the value in ping.interval by this value.

l2.healthcheck.l1.socketConnectCount

l2.healthcheck.l2.socketConnectCount

l1.healthcheck.l2.socketConnectCount

The maximum number (integer) of successful
socket connections that can be made without a
successful ping probe. If this limit is exceeded,
HealthChecker concludes that the target node is
dead.

l1.healthcheck.l2.bindAddress

Binds the client to the configured IP address. This is
useful where a host has more than one IP address
available for a client to use. The default value of
"0.0.0.0" allows the system to assign an IP address.

Terracotta Client -> Terracotta Server

Property category is indicated by the prefix:

l2.healthcheck.l1 indicates L2 -> L1
l2.healthcheck.l2 indicates L2 -> L2
l1.healthcheck.l2 indicates L1 -> L2

For example, the l2.healthcheck.l2.ping.enabled property applies to L2 -> L2.

The following HealthChecker properties can be set in the <tc-properties> section of the Terracotta
configuration file:

Property Definition

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

79 of 162 2011-06-03 11:26

l1.healthcheck.l2.bindPort

Set the client’s callback port. Terracotta
configuration does not assign clients a port for
listening to cluster communications such as that
required by HealthChecker. The default value of
"0" allows the system to assign a port. A value of
"-1" disables a client’s callback port.

The following diagram illustrates how HealthChecker functions.

Calculating HealthChecker Maximum

The following formula can help you compute the maximum time it will take HealthChecker to discover failed
or disconnected remote nodes:

Max Time = (ping.idletime) + socketConnectCount * [(ping.interval * ping.probes) + (socketConnectTimeout *
ping.interval)]

Note the following about the formula:

The response time to a socket-connection attempt is less than or equal to (socketConnectTimeout *
ping.interval). For calculating the worst-case scenario (absolute maximum time), the equality is used.
In most real-world situations the socket-connect response time is likely to be close to 0 and the
formula can be simplified to the following:
Max Time = (ping.idletime) + [socketConnectCount * (ping.interval * ping.probes)]
ping.idletime, the trigger for the full HealthChecker process, is counted once since it is in effect only
once each time the process is triggered.
socketConnectCount is a multiplier that is in incremented as long as a positive response is received for
each socket connection attempt.
The formula yields an ideal value, since slight variations in actual times can occur.

Configuration Examples

The configuration examples in this section show settings for L1 -> L2 HealthChecker. However, they apply in
the similarly to L2 -> L2 and L2 -> L1, which means that the server is using HealthChecker on the client.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

80 of 162 2011-06-03 11:26

Aggressive

The following settings create an aggressive HealthChecker with low tolerance for short network outages or
long GC cycles:

<property name="l1.healthcheck.l2.ping.enabled" value="true" />
<property name="l1.healthcheck.l2.ping.idletime" value="2000" />
<property name="l1.healthcheck.l2.ping.interval" value="1000" />
<property name="l1.healthcheck.l2.ping.probes" value="3" />
<property name="l1.healthcheck.l2.socketConnect" value="true" />
<property name="l1.healthcheck.l2.socketConnectTimeout" value="2" />
<property name="l1.healthcheck.l2.socketConnectCount" value="5" />

According to the HealthChecker "Max Time" formula, the maximum time before a remote node is considered
to be lost is computed in the following way:

2000 + 5 [(3 * 1000) + (2 * 1000)] = 27000

In this case, after the initial idletime of 2 seconds, the remote failed to respond to ping probes but
responded to every socket connection attempt, indicating that the node is reachable but not functional
(within the allowed time frame) or in a long GC cycle. This aggressive HealthChecker configuration declares a
node dead in no more than 27 seconds.

If at some point the node had been completely unreachable (a socket connection attempt failed),
HealthChecker would have declared it dead sooner. Where, for example, the problem is a disconnected
network cable, the "Max Time" is likely to be even shorter:

2000 + 1[3 * 1000) + (2 * 1000) = 7000

In this case, HealthChecker declares a node dead in no more than 7 seconds.

Tolerant

The following settings create a HealthChecker with a higher tolerance for interruptions in network
communications and long GC cycles:

<property name="l1.healthcheck.l2.ping.enabled" value="true" />
<property name="l1.healthcheck.l2.ping.idletime" value="5000" />
<property name="l1.healthcheck.l2.ping.interval" value="1000" />
<property name="l1.healthcheck.l2.ping.probes" value="3" />
<property name="l1.healthcheck.l2.socketConnect" value="true" />
<property name="l1.healthcheck.l2.socketConnectTimeout" value="5" />
<property name="l1.healthcheck.l2.socketConnectCount" value="10" />

According to the HealthChecker "Max Time" formula, the maximum time before a remote node is considered
to be lost is computed in the following way:

5000 + 10 [(3 x 1000) + (5 x 1000)] = 85000

In this case, after the initial idletime of 5 seconds, the remote failed to respond to ping probes but
responded to every socket connection attempt, indicating that the node is reachable but not functional
(within the allowed time frame) or excessively long GC cycle. This tolerant HealthChecker configuration
declares a node dead in no more than 85 seconds.

If at some point the node had been completely unreachable (a socket connection attempt failed),
HealthChecker would have declared it dead sooner. Where, for example, the problem is a disconnected
network cable, the "Max Time" is likely to be even shorter:

5000 + 1[3 * 1000) + (5 * 1000)] = 13000

In this case, HealthChecker declares a node dead in no more than 13 seconds.

6.2.3b Automatic Server Instance Reconnect

An automatic reconnect mechanism can prevent short network disruptions from forcing a restart for any
Terracotta server instances in a server array with hot standbys. If not disabled, this mechanism is by default
in effect in clusters set to networked-based HA mode.

NOTE: Increased Time-to-Failover

This feature increases time-to-failover by the timeout value set for the automatic reconnect mechanism.

This event-based reconnection mechanism works independently and exclusively of HealthChecker. If
HealthChecker has already been triggered, this mechanism cannot be triggered for the same node. If this
mechanism is triggered first by an internal Terracotta event, HealthChecker is prevented from being
triggered for the same node. The events that can trigger this mechanism are not exposed by API but are
logged.

Configure the following properties for the reconnect mechanism:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

81 of 162 2011-06-03 11:26

l2.nha.tcgroupcomm.reconnect.enabled – When set to "true" enables a server instance to
attempt reconnection with its peer server instance after a disconnection is detected.
l2.nha.tcgroupcomm.reconnect.timeout – Enabled if
l2.nha.tcgroupcomm.reconnect.enabled is set to true. Specifies the timeout (in
milliseconds) for reconnection. Default: 2000. This parameter can be tuned to handle longer network
disruptions.

6.2.3c Automatic Client Reconnect

Clients disconnected from a Terracotta cluster normally require a restart to rejoin the cluster. An automatic
reconnect mechanism can prevent short network disruptions from forcing a restart for Terracotta clients
disconnected from a Terracotta cluster.

NOTE: Performance Impact of Using Automatic C lient Reconnect

With this feature, clients waiting to reconnect continue to hold locks. Some application threads may block
while waiting to for the client to reconnect.

This event-based reconnection mechanism works independently and exclusively of HealthChecker. If
HealthChecker has already been triggered, this mechanism cannot be triggered for the same node. If this
mechanism is triggered first by an internal Terracotta event, HealthChecker is prevented from being
triggered for the same node. The events that can trigger this mechanism are not exposed by API but are
logged.

Configure the following properties for the reconnect mechanism:

l2.l1reconnect.enabled – When set to "true" enables a client to reconnect to a cluster after a
disconnection is detected. This property controls a server instance's reaction to such an attempt. It is
set on the server instance and is passed to clients by the server instance. A client cannot override the
server instance's setting. If a mismatch exists between the client setting and a server instance's setting,
and the client attempts to reconnect to the cluster, the client emits a mismatch error and exits.
l2.l1reconnect.timeout.millis – Enabled if l2.l1reconnect.enabled is set to true.
Specifies the timeout (in milliseconds) for reconnection. This property controls a server instance's
timeout during such an attempt. It is set on the server instance and is passed to clients by the server
instance. A client cannot override the server instance's setting. Default: 2000. This parameter can be
tuned to handle longer network disruptions.

6.2.3d Special Client Connection Properties

Client connections can also be tuned for the following special cases:

Client failover after server failure
First-time client connection

The connection properties associated with these cases are already optimized for most typical environments.
If you attempt to tune these properties, be sure to thoroughly test the new settings.

Client Failover After Server Failure

When an active Terracotta server instance fails, and a "hot" standby Terracotta server is available, the
formerly "passive" server becomes active. Terracotta clients connected to the previous active server
automatically switch to the new active server. However, these clients have a limited window of time to
complete the failover.

TIP: Clusters with a Single Server

This reconnection window also applies in a cluster with a single Terracotta server that is restarted.
However, a single-server cluster must have its <persistence> element’s <mode> subelement set to
"permanent-store" for the reconnection window to take effect.

This window is configured in the Terracotta configuration file using the <client-reconnect-window> element:

<servers>
 <server>
 ...
 <dso>
 ...
 <!-- The reconnect window is configured in seconds, with a default value of 120. The default
value is "built in," so the element does not have to be explicitly added unless a different value is
required. -->
 <client-reconnect-window>120</client-reconnect-window>
 ...

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

82 of 162 2011-06-03 11:26

 </dso>
 ...
 </server>
</servers>

Clients which fail to connect to the new active server must be restarted if they are to successfully rejoin the
cluster.

First-Time Client Connection

When a Terracotta client is first started (or restarted), it attempts to connect to a Terracotta server instance
based on the following properties:

-1 == retry all configured servers eternally.
l1.max.connect.retries = -1
Must the client and server be running the same version of Terracotta?
l1.connect.versionMatchCheck.enabled = true
Time (in milliseconds) before a socket connection attempt is timed out.
l1.socket.connect.timeout=10000
Time (in milliseconds; minimum 10) between attempts to connect to a server.
l1.socket.reconnect.waitInterval=1000

A client with l1.max.connect.retries set to a positive integer is given a limited number of attempts
(equal to that integer) to connect. If the client fails to connect after the configured number of attempts, it
exits.

6.3 Terracotta Server Arrays
This document shows you how to add cluster reliability, availability, and scalability to a Terracotta Server
Array.

A Terracotta Server Array can vary from a basic two-node tandem to a multi-node array providing
configurable scale, high performance, and deep failover coverage.

The main features of the Terracotta Server Array include:

Scalability Without Complexity – Simple configuration to add server instances to meet growing demand
and facilitate capacity planning
High Availability – Instant failover for continuous uptime and services
Configurable Health Monitoring – Terracotta HealthChecker for internode monitoring
Persistent Application State – Automatic permanent storage of all current shared (in-memory) data
Automatic Node Reconnection – Temporarily disconnected server instances and clients rejoin the
cluster without operator intervention

TIP: Nomenclature

This document may refer to a Terracotta server instance as L2, and a Terracotta client (the node
running your application) as L1. These are the shorthand references used in Terracotta configuration
files.

6.3.1 Definitions and Functional Characteristics
The major components of a Terracotta installation are the following:

Cluster – All of the Terracotta server instances and clients that work together to share application state
or a data set.
Terracotta Server Array – The platform, consisting of all of the Terracotta server instances in a single
cluster. Clustered data, also called in-memory data, or shared data, is partitioned equally among
active Terracotta server instances for management and persistence purposes.
Terracotta mirror group – A unit in the Terracotta Server Array. Sometimes also called a "stripe," a
mirror group is composed of exactly one active Terracotta server instance and at least one "hot
standby" Terracotta server instance (simply called a "standby"). The active server instance manages and
persists the fraction of shared data allotted to its mirror group, while each standby server in the mirror
group replicates (or mirrors) the shared data managed by the active server. Mirror groups add capacity
to the cluster . The standby servers are optional but highly recommended for providing failover.
Terracotta server instance – A single Terracotta server. An active server instance manages Terracotta
clients, coordinates shared objects, and persists data. Server instances have no awareness of the
clustered applications running on Terracotta clients. A standby (sometimes called "passive") is a live
backup server instance which continuously replicates the shared data of an active server instance,
instantaneously replacing the active if the active fails. Standby servers add failover coverage within
each mirror group .

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

83 of 162 2011-06-03 11:26

Terracotta client – Terracotta clients run on application servers along with the applications being
clustered by Terracotta. Clients manage live shared-object graphs.

TIP: Switching Server-Array Databases

Another component of the cluster is the embedded database. The Terracotta Server Array uses a
licensed database, called BerkeleyDB, to back up all shared (distributed) data. If you would to switch
to using Apache Derby as the embedded database, simply add the following property to the
Terracotta configuration file’s <tc-properties> block then start or restart the Terracotta Server Array:
<property name="l2.db.factory.name" value="com.tc.objectserver.storage.derby.DerbyDBFactory" />

You can set additional Apache Derby properties using <property> elements in the <tc-properties>
block. For example, to set the property derby.storage.pageCacheSize=10000 simply
append "l2.derbydb" to the property name before adding it:
<property name="l2.derbydb.derby.storage.pageCacheSize" value="10000" />

To reset to the default embedded database, remove all Derby-related properties from the Terracotta
configuration file and restart the Terracotta Server Array.

If you are using Terracotta Server Array 3.5.1 or later, and want to completely remove BerkeleyDB
from your environment, delete the file je-4.1.7.jar from the ${TERRACOTTA_HOME}/lib
directory.

Figure 1 illustrates a Terracotta cluster with three mirror groups. Each mirror group has an active server and
a standby, and manages one third of the shared data in the cluster.

A Terracotta cluster has the
following functional
characteristics:

Each mirror group
automatically elects one
active Terracotta server
instance.
There can never be more
than one active server
instance per mirror group,
but there can be any
number of standbys. In
Fig. 1, Mirror Group 1
could have two standbys,
while Mirror Group 3 could
have four standbys.
However, a performance
overhead may become evident when adding more standby servers due to the load placed on the
active server by having to synchronize with each standby.
Every mirror group in the cluster must have a Terracotta server instance in active mode before the
cluster is ready to do work.
The shared data in the cluster is automatically partitioned and distributed to the mirror groups.
The number of partitions equals the number of mirror groups. In Fig. 1, each mirror group has one
third of the shared data in the cluster.
Mirror groups can not provide failover for each other.
Failover is provided within each mirror group, not across mirror groups. This is because mirror groups
provide scale by managing discrete portions of the shared data in the cluster -- they do not replicate
each other. In Fig. 1, if Mirror Group 1 goes down, the cluster must pause (stop work) until Mirror
Group 1 is back up with its portion of the shared data intact.
Active servers are self-coordinating among themselves.
No additional configuration is required to coordinate active server instances.
Only standby server instances can be hot-swapped in an array.
In Fig. 1, the L2 PASSIVE (standby) servers can be shut down and replaced with no affect on cluster
functions. However, to add or remove an entire mirror group, the cluster must be brought down. Note
also that in this case the original Terracotta configuration file is still in effect and no new servers can
be added. Replaced standby servers must have the same address (hostname or IP address). If you must
swap in a standby with a different configuration, and you have an enterprise edition of Terracotta,
see Changing Cluster Topology in a Live Cluster.

6.3.2 Server Array Configuration Tips
To successfully configure a Terracotta Server Array using the Terracotta configuration file, note the

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

84 of 162 2011-06-03 11:26

following:

Two or more servers should be defined in the <servers> section of Terracotta configuration file.
<l2-group-port> is the port used by the Terracotta server to communicate with other Terracotta
servers.
The <ha> section, which appears immediately after the last <server> section (or the <mirror-groups>
section), should declare the mode as "networked-active-passive":

 <ha>
 <mode>networked-active-passive</mode>
 <networked-active-passive>
 <election-time>5</election-time>
 </networked-active-passive>
 </ha>

The active-passive mode "disk-based-active-passive" is not recommended except for demonstration
purposes or where a networked connection is not feasible. See the cluster architecture section in the
Terracotta Concept and Architecture Guide for more information on disk-based active-passive mode.
The <networked-active-passive> subsection has a configurable parameter called <election-time>
whose value is given in seconds. <election-time> sets the duration for electing an ACTIVE server, often
a factor in network latency and server load. The default value is 5 seconds.

NOTE: Sharing Data Directories

When using networked-active-passive mode, Terracotta server instances must not share data
directories. Each server's <data> element should point to a different and preferably local data
directory.

A reconnection mechanism restores lost connections between active and passive Terracotta server
instances. See Automatic Server Instance Reconnect for more information.
A reconnection mechanism restores lost connections between Terracotta clients and server instances.
See Automatic Client Reconnect for more information.
For data safety, persistence should be set to "permanent-store" for server arrays.
"permanent-store" means that application state, or shared in-memory data, is backed up to disk. In
case of failure, it is automatically restored. Shared data is removed from disk once it no longer exists
in any client's memory.

NOTE: Terracotta and Java Versions

All servers and clients should be running the same version of Terracotta and Java.

For more information on Terracotta configuration files, see:

Working with Terracotta Configuration Files
Configuration Guide and Reference (Servers Configuration Section)

6.3.3 Backing Up Persisted Shared Data
Certain versions of Terracotta provide tools to create backups of the Terracotta Server Array disk store. See
the Terracotta Operations Center and the Database Backup Utility (backup-data) for more information.

6.3.4 Client Disconnection
Any Terracotta Server Array handles perceived client disconnection (for example a network failure, a long
client GC, or node failure) based on the configuration of the HealthChecker or Automatic Client Reconnect
mechanisms. A disconnected client also attempts to reconnect based on these mechanisms. The client tries
to reconnect first to the initial server, then to any other servers set up in its Terracotta configuration. To
preserve data integrity, clients resend any transactions for which they have not received server acks.

For more information on client behavior, see Cluster Structure and Behavior.

6.3.5 Cluster Structure and Behavior
The Terracotta cluster can be configured into a number of different setups to serve both deployment stage
and production needs. Note that in multi-setup setups, failover characteristics are affected by HA settings
(see Configuring Terracotta Clusters For High Availability).

6.3.5a Terracotta Cluster in Development

Persistence: No | Failover: No | Scale: No

In a development environment, persisting shared data is often unnecessary and even inconvenient. It puts

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

85 of 162 2011-06-03 11:26

more load on the server, while accumulated data can fill up disks or prevent automatic restarts of servers,
requiring manual intervention. Running a single-server Terracotta cluster without persistence is a good
solution for creating a more efficient development environment.

By default, a single Terracotta server is in "temporary-swap-mode", which means it lacks persistence. Its
configuration could look like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-5.xsd">
 <servers>
 <server name="Server1">
 <data>/opt/terracotta/server1-data</data>
 <l2-group-port>9530</l2-group-port>
 </server>
 <servers>
 ...
</tc:tc-config>

Server Restart

If this server goes down, all application state (all clustered data) in the shared heap is lost. In addition, when
the server is up again, all clients must be restarted to rejoin the cluster.

6.3.5b Terracotta Cluster With Reliability

Persistence: Yes | Failover: No | Scale: No

The "unreliable" configuration in Terracotta Cluster in Development may be advantageous in development,
but if shared in-memory data must be persisted, the server's configuration must be expanded:

<?xml version="1.0" encoding="UTF-8" ?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-5.xsd">
 <servers>
 <server name="Server1">
 <data>/opt/terracotta/server1-data</data>
 <l2-group-port>9530</l2-group-port>
 <dso>

 <!-- The persistence mode is "temporary-swap-only" by default, so it must be changed explicitly. -->
 <persistence>
 <mode>permanent-store</mode>
 </persistence>

 </dso>
 </server>
 </servers>
 ...
</tc:tc-config>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

86 of 162 2011-06-03 11:26

The value of the <persistence> element's <mode> subelement is "temporary-swap-only" by default. By
changing it to "permanent-store", the server now backs up all shared in-memory data to disk.

Server Restart

If the server is restarted, application state (all clustered data) in the shared heap is restored.

In addition, previously connected clients are allowed to rejoin the cluster within a window set by the <client-
reconnect-window> element:

<?xml version="1.0" encoding="UTF-8" ?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-5.xsd">
 <servers>
 <server name="Server1">
 <data>/opt/terracotta/server1-data</data>
 <l2-group-port>9530</l2-group-port>
 <dso>
 <!-- By default the window is 120 seconds. -->
 <client-reconnect-window>120</client-reconnect-window>
 <!-- The persistence mode is "temporary-swap-only" by default, so it must be changed explicitly. -->
 <persistence>
 <mode>permanent-store</mode>
 </persistence>

 </dso>
 </server>
 </servers>
 ...
</tc:tc-config>

The <client-reconnect-window> does not have to be explicitly set if the default value is acceptable.
However, in a single-server cluster <client-reconnect-window> is in effect only if persistence mode is set to
"permanent-store".

6.3.5c Terracotta Server Array with High Availability

Persistence: Yes | Failover: Yes | Scale: No

The example illustrated in Fig. 3 presents a reliable but not highly available cluster. If the server fails, the
cluster fails. There is no redundancy to provide failover. Adding a standby server adds availability because
the standby failover (see Fig. 4).

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

87 of 162 2011-06-03 11:26

In this array, if the active Terracotta server instance fails then the standby instantly takes over and the
cluster continues functioning. No data is lost.

The following Terracotta configuration file demonstrates how to configure this two-server array:

<?xml version="1.0" encoding="UTF-8" ?>
<tc:tc-config xmlns:tc="http://www.terracotta.org/config"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-5.xsd">
 <servers>
 <server name="Server1">
 <data>/opt/terracotta/server1-data</data>
 <l2-group-port>9530</l2-group-port>
 <dso>
 <persistence>
 <mode>permanent-store</mode>
 </persistence>
 </dso>
 </server>
 <server name="Server2">
 <data>/opt/terracotta/server2-data</data>
 <l2-group-port>9530</l2-group-port>
 <dso>
 <persistence>
 <mode>permanent-store</mode>
 </persistence>
 </dso>
 </server>
 <ha>
 <mode>networked-active-passive</mode>
 <networked-active-passive>
 <election-time>5</election-time>
 </networked-active-passive>
 </ha>
 </servers>
 ...
</tc:tc-config>

The recommended <mode> in the <ha> section is "networked-active-passive" because it allows the active and
passive servers to synchronize directly, without relying on a disk.

You can add more standby servers to this configuration by adding more <server> sections. However, a
performance overhead may become evident when adding more standby servers due to the load placed on
the active server by having to synchronize with each standby.

Starting the Servers

How server instances behave at startup depends on when in the life of the cluster they are started.

In a single-server configuration, when the server is started it performs a startup routine and then is ready to
run the cluster (ACTIVE status). If multiple server instances are started at the same time, one is elected the
active server (ACTIVE-COORDINATOR status) while the others serve as standbys (PASSIVE-STANDBY status). The
election is recorded in the servers’ logs.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

88 of 162 2011-06-03 11:26

If a server instance is started while an active server instance is present, it syncs up state from the active
server instance before becoming a standby. The active and passive servers must always be synchronized,
allowing the passive to mirror the state of the active. The standby server goes through the following states:

1. PASSIVE-UNINITIALIZED – The standby is beginning its startup sequence and is not ready to perform
failover should the active fail or be shut down. The server’s status light in the Terracotta Developer
Console switches from red to yellow.

2. INITIALIZING – The standby is synchronizing state with the active and is not ready to perform failover
should the active fail or be shut down. The server’s status light in the Terracotta Developer Console
switches from yellow to orange.

3. PASSIVE-STANDBY – The standby is synchronized and is ready to perform failover should the active
server fail or be shut down. The server’s status light in the Terracotta Developer Console switches from
orange to cyan.

The active server instance carries the load of sending state to the standby during the synchronization
process. The time taken to synchronized is dependent on the amount of clustered data and on the current
load on the cluster. The active server instance and standbys should be run on similarly configured machines
for better throughput, and should be started together to avoid unnecessary sync ups.

Failover

If the active server instance fails and two or more standby server instances are available, an election
determines the new active. Successful failover to a new active takes place only if at least one standby server
is fully synchronized with the failed active server; successful client failover (migration to the new active) can
happen only if the server failover is successful. Shutting down the active server before a fully-synchronized
standby is available can result in a cluster-wide failure.

TIP: Hot-Swapping Standbys

Standbys can be hot swapped if the replacement matches the original standby’s <server> block in the
Terracotta configuration. For example, the new standby should use the same host name or IP address
configured for the original standby. If you must swap in a standby with a different configuration, and you
have an enterprise edition of Terracotta, see Changing Cluster Topology in a Live Cluster.

Terracotta server instances acting as standbys can run either in persistent mode or non-persistent mode. If
an active server instance running in persistent mode goes down, and a standby takes over, the crashed
server’s data directory must be cleared before it can be restarted and allowed to rejoin the cluster.
Removing the data is necessary because the cluster state could have changed since the crash. During startup,
the restarted server’s new state is synchronized from the new active server instance. A crashed standby
running in persistent mode, however, automatically recovers by wiping its own database.

NOTE: Manually Clearing a Standby Server’s Data

Under certain circumstances, standbys may fail to automatically clear their data directory and fail to
restart, generating errors. In this case, the data directory must be manually cleared.

Even if the standby’s data is cleared, a copy of it is saved. By default, the number of copies is unlimited.
Over time, and with frequent restarts, these copies may consume a substantial amount of disk space if the
amount of shared data is large. You can manually delete these files, which are saved in the server’s data
directory under /dirty-objectdb-backup/dirty-objectdb-<timestamp> . You can also set a
limit for the number of backups by adding the following element to the Terracotta configuration file’s
<tc-properties> block:

<property name="l2.nha.dirtydb.rolling" value="<myValue>" />

where <myValue> is an integer.

If both servers are down, and clustered data is persisted, the last server to be active should be started first to
avoid errors and data loss. Check the server logs to determine which server was last active. (In setups where
data is not persisted, meaning that persistence mode is set to "temporary-swap-only", then no data is saved
and either server can be started first.)

A Safe Failover Procedure

To safely migrate clients to a standby server without stopping the cluster, follow these steps:

1. If it is not already running, start the standby server using the start-tc-server script.
The standby server must already be configured in the Terracotta configuration file.

2. Ensure that the standby server is ready for failover (PASSIVE-STANDBY status).
3. Shut down the active server using the stop-tc-server script.

Clients should connect to the new active server.
4. Restart any clients that fail to reconnect to the new active server within the configured reconnection

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

89 of 162 2011-06-03 11:26

window.
5. If running with persistence, delete the database of the previously active server before restarting it.

The previously active server can now rejoin the cluster as a standby server.

A Safe Cluster Shutdown Procedure

For a cluster with persistence, a safe cluster shutdown should follow these steps:

1. Shut down the standby server using the stop-tc-server script.
2. Shut down the clients.

The Terracotta client will shut down when you shut down your application.
3. Shut down the active server using the stop-tc-server script.

To restart the cluster, first start the server that was last active. If clustered data is not persisted, either
server could be started first as no database conflicts can take place.

Split Brain Scenario

In a Terracotta cluster, "split brain" refers to a scenario where two servers assume the role of active server
(ACTIVE-COORDINATOR status). This can occur during a network problem that disconnects the active and
standby servers, causing the standby to both become an active server and open a reconnection window for
clients (<client-reconnect-window>).

If the connection between the two servers is never restored, then two independent clusters are in operation.
This is not a split-brain situation. However, if the connection is restored, one of the following scenarios
results:

No clients connect to the new active server – The original active server "zaps" the new active server,
causing it to restart, wipe its database, and synchronize again as a standby.
A minority of clients connect to the new active server – The original active server starts a reconnect
timeout (based on HA settings; see Configuring Terracotta Clusters For High Availability) for the clients
that it loses, while zapping the new active server. The new active restarts, wipes its database, and
synchronizes again as a standby. Clients that defected to the new active attempt to reconnect to the
original active, but if they do not succeed within the parameters set by that server, they must be
restarted.
A majority of clients connects to the new active server – The new active server "zaps" the original
active server. The original active restarts, wipes its database, and synchronizes again as a standby.
Clients that do not connect to the new active within its configured reconnection window must be
restarted.
An equal number of clients connect to the new active server – In this unlikely event, exactly one half of
the original active server’s clients connect to the new active server. The servers must now attempt to
determine which of them holds the latest transactions (or has the freshest data). The winner zaps the
loser, and clients behave as noted above, depending on which server remains active. Manual shutdown
of one of the servers may become necessary if a timely resolution does not occur.

The cluster can solve almost all split-brain occurrences without loss or corruption of shared data. However, it
is highly recommended that after such an occurrence the integrity of shared data be confirmed.

6.3.5d Scaling the Terracotta Server Array

Persistence: Yes | Failover: Yes | Scale: Yes

For capacity requirements that exceed the capabilities of an two-server active-passive setup, expand the
Terracotta cluster using a mirror-groups configuration. Mirror groups are available with an enterprise version
of Terracotta software. Using mirror groups with multiple coordinated active Terracotta server instances
adds scalability to the Terracotta Server Array.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

90 of 162 2011-06-03 11:26

Mirror groups are specified in the <servers> section of the Terracotta configuration file. Mirror groups work by
assigning group memberships to Terracotta server instances. The following snippet from a Terracotta
configuration file shows a mirror-group configuration with four servers:

...

 <servers>
 <server name="server1">
 ...
 </server>
 <server name="server2">
 ...
 </server>
 <server name="server3">
 ...
 </server>
 <server name="server4">
 ...
 </server>
 <mirror-groups>
 <mirror-group group-name="groupA">
 <members>
 <member>server1</member>
 <member>server2</member>
 </members>
 </mirror-group>
 <mirror-group group-name="groupB">
 <members>
 <member>server3</member>
 <member>server4</member>
 </members>
 </mirror-group>
 </mirror-groups>
 <ha>
 <mode>networked-active-passive</mode>
 <networked-active-passive>
 <election-time>5</election-time>
 </networked-active-passive>
 </ha>
 </servers>
...

In this example, the cluster is configured to have two active servers, each with its own standby. If server1 is
elected active in groupA, server2 becomes its standby. If server3 is elected active in groupB, server4 becomes
its standby. server1 and server2 automatically coordinate their work managing Terracotta clients and shared
data across the cluster.

In a Terracotta cluster designed for multiple active Terracotta server instances, the server instances in each
mirror group participate in an election to choose the active. Once every mirror group has elected an active
server instance, all the active server instances in the cluster begin cooperatively managing the cluster. The
rest of the server instances become standbys for the active server instance in their mirror group. If the active

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

91 of 162 2011-06-03 11:26

in a mirror group fails, a new election takes place to determine that mirror group's new active. Clients
continue work without regard to the failure.

In a Terracotta cluster with mirror groups, each group, or "stripe," behaves in a similar way to an active-
passive setup (see Terracotta Server Array with High Availability). For example, when a server instance is
started in a stripe while an active server instance is present, it synchronizes state from the active server
instance before becoming a standby. A standby cannot become an active server instance during a failure
until it is fully synchronized. If an active server instance running in persistent mode goes down, and a standby
takes over, the data directory must be cleared before bringing back the crashed server.

TIP: Hot-Swapping Standbys

Standbys can be hot swapped if the replacement matches the original standby’s <server> block in the
Terracotta configuration. For example, the new standby should use the same host name or IP address
configured for the original standby. If you must swap in a standby with a different configuration, and you
have an enterprise edition of Terracotta, see Changing Cluster Topology in a Live Cluster.

Stripe and Cluster Failure

If the active server in a mirror group fails or is taken down, the cluster stops until a standby takes over and
becomes active (ACTIVE-COORDINATOR status).

However, the cluster cannot survive the loss of an entire stripe. If an entire stripe fails and no server in the
failed mirror-group becomes active within the allowed window (based on HA settings; see Configuring
Terracotta Clusters For High Availability), the entire cluster must be restarted.

High Availability Per Mirror Group

High-availability configuration can be set per mirror group. The following snippet from a Terracotta
configuration file shows a mirror-group configured with its own high-availability section:

...
 <servers>
 <server name="server1">
 ...
 </server>
 <server name="server2">
 ...
 </server>
 <server name="server3">
 ...
 </server>
 <server name="server4">
 ...
 </server>
 <mirror-groups>
 <mirror-group group-name="groupA">
 <members>
 <member>server1</member>
 <member>server2</member>
 </members>
 <ha>
 <mode>networked-active-passive</mode>
 <networked-active-passive>
 <election-time>10</election-time>
 </networked-active-passive>
 </ha>
 </mirror-group>
 <mirror-group group-name="groupB">
 <members>
 <member>server3</member>
 <member>server4</member>
 </members>
 </mirror-group>
 </mirror-groups>
 <ha>
 <mode>networked-active-passive</mode>
 <networked-active-passive>
 <election-time>5</election-time>
 </networked-active-passive>
 </ha>
 </servers>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

92 of 162 2011-06-03 11:26

...

In this example, the servers in groupA can take up to 10 seconds to elect an active server. The servers in
groupB take their election time from the <ha> section outside the <mirror-groups> block, which is in force
for all mirror groups that do not have their own <ha> section.

See the mirror-groups section in the Configuration Guide and Reference for more information on mirror-
groups configuration elements.

6.4 Improving Server Performance With BigMemory
Servers can have a large amount of physical memory--16GB, 32GB, and more--but the long-standing problem
of Java garbage collection (GC) limits the ability of all Java applications, including Terracotta server
instances, to use that memory effectively. This drawback has limited Terracotta servers to using a small Java
object heap as an in-memory store, backed by a limitless but slower disk store.

BigMemory gives Terracotta servers instant, effortless access to hardware memory free of the constraints of
GC. BigMemory is available with enterprise versions of Terracotta software, and can also be used with
Terracotta DSO.

6.4.1 How BigMemory Improves Performance
The performance of Terracotta server instances is affected by the amount of faulting required to make data
available. In-memory data elements are fetched very quickly because memory is very fast. Data elements
that are not found in memory must be faulted in from disk, and sometimes from an even slower system of
record, such as a database. While disk-based storage slows applications down, it is limitless in size. While
in-memory storage is limited in size by system and hardware constraints, even this limit is difficult to reach
due to the heavy costs imposed by Java garbage collection (GC). Full GC operations can slow a system to a
crawl, and the larger the heap, the more often these operations are likely to occur. In most cases, heaps
have been limited to about 2GB in size.

BigMemory allows Terracotta servers to expand memory storage in a way that bypasses the limitations
resulting from Java GC. Using this off-heap memory gives the Terracotta cluster a number of important
advantages:

Larger in-memory stores without the pauses of GC.
Overall reduction in faulting from disk or database.
Low latencies as a result of more data available to applications at memory speed.
Fewer Terracotta server stripes required to efficiently handle the same amount of data.

Data stored in off-heap memory is stored in a cache, and therefore all data elements (keys and values) must
be serializable. However, the costs imposed by serialization and deserialization are far outweighed by the
performance gains noted above.

The following diagram illustrates how BigMemory adds a layer of off-heap memory storage that reduces
faulting from the Terracotta server's disk yet remains outside of GC's domain.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

93 of 162 2011-06-03 11:26

6.4.2 Requirements
BigMemory runs on each Terracotta server in a Terracotta Server Array. To use BigMemory, you must install
and run a Terracotta enterprise kit (version 3.4.0 or higher) and a valid Terracotta license key that includes
BigMemory. For more information on installing a license key, see Using a License File.

BigMemory requires the 32-bit or 64-bit Oracle HotSpot (formerly Sun HotSpot) JVM. 64-bit systems can
operate with more memory than 32-bit systems. Running BigMemory on a 64-bit system allows for more
off-heap memory to be allocated.

NOTE: Using a 32-bit JVM

The amount of heap-offload you can achieve is limited by addressable memory. For a 32-bit process model,
the maximum virtual address size of the process is typically 4GB, though most 32-bit operating systems have
a 2GB limit. The maximum heap size available to Java is lower still due to particular OS limitations, other
operations that may run on the machine (such as mmap operations used by certain APIs), and various JVM
requirements for loading shared libraries and other code.

A useful rule to observe is to allocate no more to off-heap memory than what is left over after -Xmx is set.
For example, if you set -Xmx3G , then off-heap should be no more than 1GB. Breaking this rule may not
cause an OOME on startup, but one is likely to occur at some point during the JVM's life.

6.4.3 Configuring BigMemory
BigMemory is configured in the Terracotta server’s environment and in its configuration file.

6.4.3a Configuring Direct Memory Space

Before starting a Terracotta server with off-heap, direct memory space, also called direct (memory) buffers,
must be allocated. Direct memory space is allocated using the Java property MaxDirectMemorySize :

-XX:MaxDirectMemorySize=<amount of memory alloted>[m|g]

where "m" stands for megabytes (MB) and "g" stands for gigabytes (GB).

Note the following about allocating direct memory space:

MaxDirectMemorySize must be added to the Terracotta server’s startup environment. For
example, you can add it the server’s Java options in ${TERRACOTTA_HOME}/bin/start-
tc-server.sh or %TERRACOTTA_HOME%\bin\start-tc-server.bat .
Direct memory space, which is part of the Java process heap, is separate from the object heap
allocated by -Xmx . The value allocated by MaxDirectMemorySize must not exceed physical RAM,

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

94 of 162 2011-06-03 11:26

and is likely to be less than total available RAM due to other memory requirements.
The amount of direct memory space allocated must be within the constraints of available system
memory and configured off-heap memory (see 6.4.3b Configuring Off-Heap).

6.4.3b Configuring Off-Heap

BigMemory is set up by configuring off-heap memory in the Terracotta configuration file for each Terracotta
server, then allocating memory at startup using MaxDirectMemorySize . For example, to allocate up to
9GB of off-heap memory, add the <offheap> block as shown:

<server host="myHost" name="server1">
 <dso>
 ...
 <persistence>
 ...
 <offheap>
 <enabled>true</enabled>
<!-- Allocate 9GB of off-heap memory for clustered data. -->
 <maxDataSize>9g</maxDataSize>
 </offheap>
 ...
 </persistence>
 ...
 </dso>
 ...
</server>

The amount of configured off-heap memory must be at least 128MB and at least 32MB less than the amount
of off-heap memory allocated by MaxDirectMemorySize . If, at startup, a server determines that the
memory allocated by MaxDirectMemorySize is insufficient, an error similar to the following is logged:

2011-03-28 07:39:59,316 ERROR - The JVM argument -XX:MaxDirectMemorySize(128m) cannot be less than TC
minimum Direct memory requirement: 202.22m

In this case, you must set MaxDirectMemorySize to a value equal to or greater than the minimum given
in the error.

6.4.3c Maximum, Minimum, and Default Values

The maximum amount of direct memory space you can use depends on the process data model (32-bit or
64-bit) and the associated operating system limitations, the amount of virtual memory available on the
system, and the amount of physical memory available on the system. While 32-bit systems have strict
limitations on the amount of memory that can be effectively managed, 64-bit systems can allow as much
memory as the hardware and operating system can handle.

The maximum amount you can allocate to off-heap memory cannot exceed the amount of direct memory
space, and should likely be less because direct memory space may be shared with other Java and system
processes.

The minimum off-heap you can allocate per server is 160MB.

If you configure off-heap memory but do not allocate direct memory space with
-XX:MaxDirectMemorySize , the default value for direct memory space depends on your version of
your JVM. Oracle HotSpot has a default equal to maximum heap size (-Xmx value), although some early
versions may default to a particular value.

6.4.4 Optimizing BigMemory
You should thoroughly test BigMemory with your application before going to production. If performance or
functional issues arise, see the suggested tuning tips in this section. It is recommended that you test
BigMemory with the actual amount of data you expect to use in production.

6.4.4a General Memory allocation

Committing too much of a system's physical memory is likely to result in paging of virtual memory to disk,
quite likely during garbage collection operations, leading to significant performance issues. On systems with
multiple Java processes, or multiple processes in general, the sum of the Java heaps and off-heap stores for
those processes should also not exceed the size of the physical RAM in the system. Besides memory allocated
to the heap, Java processes require memory for other items, such as code (classes), stacks, and PermGen.

Note that MaxDirectMemorySize sets an upper limit for the JVM to enforce, but does not actually allocate the
specified memory. Overallocation of direct memory (or buffer) space is therefore possible, and could lead to
paging or even memory-related errors. The limit on direct buffer space set by MaxDirectMemorySize should

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

95 of 162 2011-06-03 11:26

take into account the total physical memory available, the amount of memory that is allotted to the JVM
object heap, and the portion of direct buffer space that other Java processes may consume.

Note also that there could be other users of direct buffers (such as NIO and certain frameworks and
containers). Consider allocating additional direct buffer memory to account for that additional usage.

6.4.4b Compressed References

For 64-bit JVMs running Java 6 Update 14 or higher, consider enabling compressed references to improve
overall performance. For heaps up to 32GB, this feature causes references to be stored at half the size, as if
the JVM is running in 32-bit mode, freeing substantial amounts of heap for memory-intensive applications.
The JVM, however, remains in 64-bit mode, retaining the advantages of that mode.

For the Oracle HotSpot, compressed references are enabled using the option -XX:+UseCompressedOops
.

6.4.4c Swapiness and Huge Pages

An operating system (OS) may swap data from memory to disk even if memory is not running low. For the
purpose of optimization, data that appears to be unused may be a target for swapping. Because BigMemory
can store substantial amounts of data in RAM, its data may be swapped by the OS. But swapping can degrade
overall cluster performance by introducing thrashing, the condition where data is frequently moved forth
and back between memory and disk.

To make memory use more efficient, Linux, Microsoft Windows, and Oracle Solaris users should review their
configuration and usage of swappiness as well as the size of the swapped memory pages. In general,
BigMemory benefits from lowered swappiness and the use of huge pages (also known as big pages or large
pages , and superpages).

6.5 Cluster Security
The Enterprise Edition of the Terracotta kit provides standard authentication methods to control access to
Terracotta servers. Enabling one of these methods causes a Terracotta server to require credentials before
allowing a JMX connection to proceed.

6.5.1 Configuring Security
You can configure security using the Lightweight Directory Access Protocol (LDAP) or JMX authentication.

6.5.1a How to Configure Security Using LDAP (via JAAS)

LDAP security is based on JAAS and requires Java 1.6. Using an earlier version of Java will not prevent
Terracotta servers from running; however security will not be enabled.

To configure security using LDAP, follow these steps:

1. Save the following configuration to the file .java.login.config :

Terracotta {
com.sun.security.auth.module.LdapLoginModule REQUIRED
java.naming.security.authentication="simple"
userProvider="ldap://orgstage:389"
authIdentity="uid={USERNAME},ou=People,dc=terracotta,dc=org"
authzIdentity=controlRole
useSSL=false
bindDn="cn=Manager"
bindCredential="****"
bindAuthenticationType="simple"
debug=true;
};

2. Save the file .java.login.config to the directory named in the Java property user.home .
3. Add the following configuration to each <server> block in the Terracotta configuration file:

<server host="myHost" name="myServer">
...
 <authentication>
 <mode>
 <login-config-name>Terracotta</login-config-name>
 </mode>
 </authentication>
...

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

96 of 162 2011-06-03 11:26

</server>

4. Start the Terracotta server and look for a log message containing "INFO - Credentials:
loginConfig[Terracotta]" to confirm that LDAP security is in effect.

NOTE: Incorrect Setup

If security is set up incorrectly, the Terracotta server can still be started. However, you may not be
able to shut down the server using the shutdown script (stop-tc-server) or the Terracotta console.

6.5.1b How to Configure Security Using JMX Authentication

Terracotta can use the standard Java security mechanisms for JMX authentication, which relies on the
creation of .access and .password files with correct permissions set. The default location for these files
for JDK 1.5 or higher is $JAVA_HOME/jre/lib/management .

To configure security using JMX authentication, follow these steps:

1. Ensure that the desired usernames and passwords for securing the target servers are in the JMX
password file jmxremote.password and that the desired roles are in the JMX access file
jmxremote.access .

2. If both jmxremote.access and jmxremote.password are in the default location (
$JAVA_HOME/jre/lib/management), add the following configuration to each <server> block in
the Terracotta configuration file:

<server host="myHost" name="myServer">
...
 <authentication />
...
</server>

3. If jmxremote.password is not in the default location, add the following configuration to each
<server> block in the Terracotta configuration file:

<server host="myHost" name="myServer">
...
 <authentication>
 <mode>
 <password-file>/path/to/jmx.password</password-file>
 </mode>
 </authentication>
...
</server>

4. If jmxremote.access is not in the default location, add the following configuration to each
<server> block in the Terracotta configuration file:

<server host="myHost" name="myServer">
...
 <authentication>
 <mode>
 <password-file>/path/to/jmxremote.password</password-file>
 </mode>
 <access-file>/path/to/jmxremote.access</access-file>
 </authentication>
...
</server>

File Not Found Error

If the JMX password file is not found when the server starts up, an error is logged stating that the password
file does not exist.

6.5.2 Using Scripts Against a Server with Authentication
A script that targets a secured Terracotta server must use the correct login credentials to access the server. If
you run a Terracotta script such as backup-data or server-stat against a secured server, pass the credentials
using the -u (followed by username) and -w (followed by password) flags.

For example, if Server1 is secured with username "user1" and password "password", you run the server-stat
script by entering the following:

UNIX/LINUX

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

97 of 162 2011-06-03 11:26

[PROMPT]${TERRACOTTA_HOME}/bin/server-stat.sh -s Server1 -u user1 -w password

MICROSOFT WINDOWS
[PROMPT]%TERRACOTTA_HOME%\bin\server-stat.bat -s Server1 -u user1 -w password

6.5.3 Extending Server Security
Since JMX messages are not encrypted, server authentication does not provide secure message transmission
once valid credentials are provided by a listening client. To extend security beyond the login threshold,
consider the following options:

Place Terracotta servers in a secure location on a private network.
Restrict remote queries to an encrypted tunnel such as provided by SSH or stunnel.
If using public or outside networks, use a VPN for all communication in the cluster.
If using Ehcache, add a cache decorator to the cache that implements your own encryption and
decryption.

6.6 Changing Cluster Topology in a Live Cluster
Using the Terracotta Operations Center, a standalone enterprise-only console for operators, you can change
the topology of a live cluster by reloading an edited Terracotta configuration file.

Note the following restrictions:

Only the removal or addition of <server> blocks in the <servers> section of the Terracotta
configuration file are allowed.
All servers and clients must load the same configuration file to avoid topology conflicts.

6.6.1 Adding a New Server
To add a new server to a Terracotta cluster, follow these steps:

1. Add a new <server> block to the <servers> section in the Terracotta configuration file being used by
the cluster.
The new <server> block should contain the minimum information required to configure a new server.
It should appear similar to the following, with your own values substituted:

 <server host="myHost" name="server2" >
 <data>%(user.home)/terracotta/server2/server-data</data>
 <logs>%(user.home)/terracotta/server2/server-logs</logs>
 <statistics>%(user.home)/terracotta/server2/server-stats</statistics>
 <dso-port>9513</dso-port>
 </server>

2. If you are using mirror groups, be sure to add a <member> element to the appropriate group listing
the new server.

3. Open the Terracotta Operations Center by running the following script:

UNIX/LINUX
${TERRACOTTA_HOME}/bin/ops-center.sh

MICROSOFT WINDOWS
%TERRACOTTA_HOME%\bin\ops-center.bat

4. After connecting to the cluster with the Operations Center, open the Change Server Topology panel.
5. Click Reload .

A message appears with the result of the reload operation.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

98 of 162 2011-06-03 11:26

6. Start the new server.

6.6.2 Removing an Existing Server
To remove a server from a Terracotta cluster configuration, follow these steps:

1. Shut down the server you want to remove from the cluster.
If you shutting down an active server, first ensure that a backup sever is online to enable failover.

2. Delete the <server> block associated with the removed server from the <servers> section in the
Terracotta configuration file being used by the cluster.

3. If you are using mirror groups, be sure to remove the <member> element associated with the removed
server.

4. Open the Terracotta Operations Center by running the following script:

UNIX/LINUX
${TERRACOTTA_HOME}/bin/ops-center.sh

MICROSOFT WINDOWS
%TERRACOTTA_HOME%\bin\ops-center.bat

5. After connecting to the cluster with the Operations Center, open the Change Server Topology panel.
6. Click Reload .

A message appears with the result of the reload operation.

6.6.3 Editing the Configuration of an Existing Server
If you edit the configuration of an existing server and attempt to reload its configuration, the reload
operation will fail. However, you can successfully edit an existing server’s configuration by following these
steps:

1. Remove the server by following the steps in Removing an Existing Server.
Instead of deleting the server’s <server> block, you can comment it out.

2. Edit the server’s <server> block with the changed values.
3. Add (or uncomment) the edited <server> block.
4. If you are using mirror groups, be sure to add the <member> element associated with the server back

to the appropriate mirror group.
5. In the Operations Center’s Change Server Topology panel, click Reload .

A message appears with the result of the reload operation.

7 Developing Applications With the Terracotta Toolkit

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

99 of 162 2011-06-03 11:26

The Terracotta Toolkit is intended for developers working on scalable applications, frameworks, and
software tools. The Terracotta Toolkit provides the following features:

Ease-of-use – A stable API, fully documented classes (see the Terracotta Toolkit Javadoc) , and a
versioning scheme that's easy to understand.
Guaranteed compatibility – Verified by a Terracotta Compliance Kit that tests all classes to ensure
backward compatibility.
Extensibility – Includes all of the tools used to create Terracotta products, such as concurrent maps,
locks, counters, queues.
Flexibility – Can be used to build clustered products that communicate with multiple clusters.
Platform independence – Runs on any Java 1.5 or 1.6 JVM and requires no boot-jars, agents, or
container-specific code.

The Terracotta Toolkit is available with Terracotta kits version 3.3.0 and higher.

7.0.1 Installing the Terracotta Toolkit
The Terracotta Toolkit is contained in the following JAR file:

 ${TERRACOTTA_HOME}/common/terracotta-toolkit-<API version>-runtime-<JAR version>.jar

The Terracotta Toolkit JAR file should be on your application’s classpath or in WEB-INF/lib if using a WAR
file.

Maven users can add the Terracotta Toolkit as a dependency:

<dependency>
 <groupId>org.terracotta.toolkit</groupId>
 <artifactId>terracotta-toolkit-1.1-runtime</artifactId>
 <version>1.0.0</version>
 </dependency>

See the Terracotta kit version you plan to use for the correct API and JAR versions to specify in the
dependency block.

The repository is given by the following:

<repository>
 <id>terracotta-repository</id>
 <url>http://www.terracotta.org/download/reflector/releases</url>
 <releases>
 <enabled>true</enabled>
 </releases>
</repository>

7.0.2 Understanding Versions
The products you create with the Terracotta Toolkit depend on the API at its heart. The Toolkit's API has a
version number with a major digit and a minor digit that indicate its compatibility with other versions. The
major version number indicates a breaking change, while the minor version number indicates a compatible
change. For example, Terracotta Toolkit API version 1.1 is compatible with version 1.0. Version 1.2 is
compatible with both versions 1.1 and 1.0. Version 2.0 is not compatible with any version 1.x, but will be
forward compatible with any version 2.x.

7.1 Working With the Terracotta Toolkit
The Terracotta Toolkit provides access to a number of useful classes, or tools, such as distributed collections.
To access the tools in the Toolkit, your application must also first initialize the Terracotta Toolkit.

7.1.1 Initializing the Toolkit
Initializing the Terracotta Toolkit always begins with starting a Terracotta client:

...
// These classes must be imported:
import org.terracotta.api.ClusteringToolkit;
import org.terracotta.api.TerracottaClient;
...
TerracottaClient client = new TerracottaClient("localhost:9510"); // Start the client.
ClusteringToolkit toolkit = client.getToolkit(); // Make the Toolkit available to your application.
...

Or more compactly:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

100 of 162 2011-06-03 11:26

...
import org.terracotta.api.ClusteringToolkit;
import org.terracotta.api.TerracottaClient;
...
ClusteringToolkit toolkit = new TerracottaClient("localhost:9510").getToolkit();
...

When a Terracotta client is started, it must load a Terracotta configuration. Programmatically, the
TerracottaClient constructor takes as argument the source for the client’s configuration. In the example
above, the configuration source is a Terracotta server running on the local host, with DSO port set to 9510. In
general, a filename, an URL, or a resolvable hostname or IP address and DSO port number can be used. The
specified server instance must be running and accessible before the code that starts the client executes.

7.1.2 Using Toolkit Tools
The data structures and other tools provided by the Toolkit are automatically distributed (clustered) when
your application is run in a Terracotta cluster. Since the Toolkit is obtained from an instantiated client, all
Toolkit tools must be used clustered. Unclustered use is not supported in this version.

7.1.2a Toolkit Data Strucutres and Serialization

Only serialized objects can be added to Toolkit data structures, with the following exceptions:

Java primitives (int, char, byte, etc.)
Wrapper classes for Java primitives (Integer, Character, Byte, etc.)
BigInteger and BigDecimal (from java.math.)
String, Class, and StackTraceElement (from java.lang)
java.util.Currency
All Enum types

In addition, Arrays of any of the types listed above also do not require serialization. Note that your
application must perform the serialization.

7.1.2b Maps

Clustered collections are found in the package org.terracotta.collections . This package includes
a clustered Map , BlockingQueue , Set , and List . You can access these clustered collections directly
through the Terracotta Toolkit.

For example, the following gets a reference to a clustered map:

...
import org.terracotta.api.ClusteringToolkit;
import org.terracotta.api.TerracottaClient;
import org.terracotta.collections.ClusteredMap;
...
ClusteringToolkit toolkit = new TerracottaClient("localhost:9510").getToolkit();
...
ClusteredMap<int, Object> myClusteredMap = toolkit.getMap("myMap");

The returned map is a fully concurrent implementation of the ClusteredMap interface, which means that
locking is provided.

TIP: Does a Collection Provide Locking?

If a class’s name includes concurrent , it provides locking. For example, the List implementation,
TerracottaList , does not provide locking.

7.1.2c Queues

To obtain a clustered BlockingQueue , use the following:

BlockingQueue<byte[]> queue = clusterToolkit.getBlockingQueue(String MY_QUEUE);

where the String MY_QUEUE holds the name of the queue. This BlockingQueue has unlimited
capacity.

To obtain a clustered BlockingQueue with a limited capacity, use the following:

BlockingQueue<byte[]> queue = clusterToolkit.getBlockingQueue(MY_QUEUE, MAX_ITEMS);

where the int MAX_ITEMS is the maximum capacity of the queue.

Producers in the Terracotta cluster can add to the clustered queue with add() , while consumers can take
from the queue with take() . The clustered queue’s data is automatically shared and updated across the

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

101 of 162 2011-06-03 11:26

Terracotta cluster so that all nodes have the same view.

7.1.2d Cluster Information

The Terracotta Toolkit allows you to access cluster information for monitoring the nodes in the cluster, as
well as obtaining information about those nodes.

For example, you can set up a cluster listener to receive events about the status of client nodes:

import org.terracotta.api.ClusteringToolkit;
import org.terracotta.api.TerracottaClient;
import org.terracotta.cluster;
...

// Start a client and access cluster events and meta data such as topology for the cluster that the
client belongs to:
ClusteringToolkit toolkit = new TerracottaClient("localhost:9510")
.getToolkit();
ClusterInfo clusterInfo = toolkit.getClusterInfo();

// Register a cluster listener and implement methods for events:
clusterInfo.addClusterListener(new ClusterListener())
 {
 // Implement methods for nodeJoined, nodeLeft, etc. here:
 public void nodeJoined(ClusterEvent event) {
 // Do something when event is received.
 }
 public void nodeLeft(ClusterEvent event) {
 // Do something when event is received.
 }
 public void operationsEnabled(ClusterEvent event) {
 // Do something when event is received.
 }
 public void operationsDisabled(ClusterEvent event) {
 // Do something when event is received.
 }
}

You can write your own listener classes that implements the event methods, and add or remove your own
listeners:

clusterInfo.addClusterListener(new MyClusterListener());

// To remove a listener:
clusterInfo.removeClusterListener(myClusterListener);

7.1.2e Locks

Clustered locks allow you to perform safe operations on clustered data. The following types of locks are
available:

READ – This is a read lock that blocks writes.
WRITE – This is a write lock that blocks reads and writes. To improve performance, this lock flushes
changes to the Terracotta Server Array asynchronously.
SYNCHRONOUS-WRITE – A write lock that blocks until the Terracotta Server Array acknowledges
commitment of the changes that the lock has flushed to it. Maximizes safety at the cost of
performance.
CONCURRENT – A lock that makes no guarantees that any of the changes flushed to the Terracotta
Server Array have been committed. This lock is high-risk and used only where data integrity is
unimportant.

To obtain a clustered lock, use ClusteringToolkit.createLock(Object monitor, LockType
type) . For example, to obtain a write lock:

import org.terracotta.api.ClusteringToolkit;
import org.terracotta.api.TerracottaClient;
import org.terracotta.locking;
import org.terracotta.locking.strategy;
...

// Start a client.
ClusteringToolkit toolkit = new TerracottaClient("localhost:9510")
.getToolkit();

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

102 of 162 2011-06-03 11:26

// Obtain a clustered lock. The monitor object must be clustered and cannot be null.
Lock myLock = toolkit.createLock(myMonitorObject, WRITE);
myLock.lock();
try {
 // some operation under the lock
 } finally {
 myLock.unlock();
 }

To obtain a clustered read-write lock:

TerracottaClient client = new TerracottaClient("myServer:9510");

// If the identified lock exists, it is returned instead of created.
Lock rwlock = client.getToolkit().getReadWriteLock("my-lock-identifier").writeLock();

rwlock.lock();
try {
 // some operation under the lock
 } finally {
 rwlock.unlock();
 }

If you are using Enterprise Ehcache, you can use explicit locking methods on specific keys. See 2.2.5 Explicit
Locking for more information.

7.1.2f Clustered Barriers

Coordinating independent nodes is useful in many aspects of development, from running more accurate
performance and capacity tests to more effective management of workers across a cluster. A clustered
barrier is a simple and effective way of coordinating client nodes.

To get a clustered barrier:

 import org.terracotta.api.ClusteringToolkit;
import org.terracotta.api.TerracottaClient;
import org.terracotta.coordination;
...

// Start a client.
ClusteringToolkit toolkit = new TerracottaClient("localhost:9510")
.getToolkit();

// Get a clustered barrier. Note that getBarrier() as implemented in Terracotta Toolkit returns a
CyclicBarrier.
Barrier clusteredBarrier = toolkit.getBarrier(String barrierName, int numberOfParties);

7.1.2g Utilities

Utilities such as a clustered AtomicLong help track counts across a cluster. You can get (or create) a
ClusteredAtomicLong using toolkit.getAtomicLong(String name) .

Another utility, ClusteredTextBucket , shares string outputs from all nodes. Printed output from each
local node is available on every other node via this bucket. You can get (or create)
ClusteredTextBucket using toolkit.getTextBucket(String name) .

7.2 Terracotta Toolkit Reference
This section describes functional aspects of the Terracotta Toolkit.

7.2.1 Client Failures
Clients that fail will fail with System.exit() and therefore shut down the JVM. The node on which the
client failed will go down, as will all other clients and applications in that JVM.

7.2.2 Connection Issues
Client creation can block on resolving URL at this point:

TerracottaClient client = new TerracottaClient("myHost:9510");

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

103 of 162 2011-06-03 11:26

If it is known that resolving "myHost" may take too long or hang, your application can should wrap client
instantiation with code that provides a reasonable timeout.

A separate connection issue can occur after the server URL is resolved but while the client is attempting to
connect to the server. The timeout for this type of connection can be set using the Terracotta property
l1.socket.connect.timeout (see First-Time Client Connection).

7.2.3 Multiple Terracotta Clients in a Single JVM
When using the Terracotta Toolkit, you may notice that there are more Terracotta clients in the cluster than
expected.

7.2.3a Multiple Clients With a Single Web Application

This situation can arise whenever multiple classloaders are involved with multiple copies of the Toolkit JAR.

For example, to run a web application in Tomcat, one copy of the Toolkit JAR may need to be in the
application’s WEB-INF/lib directory while another may need to be in Tomcat’s common lib directory to
support loading of the context-level <Valve>. In this case, two Terracotta clients will be running with every
Tomcat instance.

7.2.3b Clients Sharing a Node ID

Clients instantiated using the same constructor (a constructor with matching parameters) in the same JVM
will share the same node ID. For example, the following clients will have the same node ID:

TerracottaClient client1 = new TerracottaClient("myHost:9510");
TerracottaClient client2 = new TerracottaClient("myHost:9511");

Cluster events generated from client1 and client2 will appear to come from the same node. In addition,
cluster topology methods may return ambiguous or useless results.

Web applications, however, can get a unique node ID even in the same JVM as long as the Terracotta Toolkit
JAR is loaded by a classloader specific to the web application instead of a common classloader.

8 Terracotta Cluster Tools

Cluster tools provide control, visibility, security, and management capabilities for setting up, maintaining,
and troubleshooting a Terracotta cluster.

8.1 Terracotta Developer Console
The Terracotta Developer Console delivers a full-featured monitoring and diagnostics tool aimed at assisting
the development and testing phases of an application clustered with Terracotta. Use the Developer Console
to isolate issues, discover tuning opportunities, observe application behavior under clustering, and learn how
the cluster holds up under load and failure conditions.

The console functions as a JMX client with a graphical user interface. It must be able to connect to the JMX
ports of server instances in the target cluster.

Enterprise versions of Terracotta also include the Terracotta Operations Center, a GUI operator's console
offering features such as backups of shared data, client disconnect, and server shutdown controls. To learn
more about the many benefits of an enterprise version of Terracotta, see the Terracotta products page .

Using the developer console, you can perform the following tasks:

Monitor and manage clustered applications using Ehcache, Ehcache for Hibernate, Quartz, and
Sessions.
View all cluster events in a single window.
View cluster-wide statistics.
Trigger distributed garbage-collection operations.
Monitor the health of servers and clients under changing conditions.
Record cluster statistics for later display.
Receive console status and server log messages in a console window.
Discover which classes are being shared in the cluster.

These and other console features are described below.

8.1.1 Launching the Terracotta Developer Console
You can launch the Terracotta Developer Console from a command line.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

104 of 162 2011-06-03 11:26

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/dev-console.sh&

Microsoft Windows
[PROMPT] %TERRACOTTA_HOME%\bin\dev-console.bat

TIP: Console Startup

When the console first starts, it waits until every Terracotta server configured to be active has reached
active status before fully connecting to the cluster. The console does not wait for standby (or passive)
servers to complete startup.

8.1.1a The Console Interface

When not connected to a server, the console displays a connect/disconnect panel, message-log window,
status line, and an inactive cluster node in the clusters panel.

The cluster list in the clusters panel could already be populated because of pre-existing references to
previously defined Terracotta clusters. These references are maintained as Java properties and persist across
sessions and product upgrades. If no clusters have been defined, a default cluster (host=localhost,
jmx-port=9520) is created.

The JMX port is set in each server’s <server> block in the Terracotta configuration file:

<server host="host1" name="server1">
...
 <jmx-port>9521</dso-port>
...
</server>

To learn more about setting JMX ports, see the Configuration Guide and Reference .

Once the console is connected to a cluster, the cluster node in the clusters panel serves as the root of an
expandable/collapsible tree with nested displays and controls. One cluster node appears for each cluster you
connect to.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

105 of 162 2011-06-03 11:26

8.1.1b Console Messages

Click Messages in the Status panel to view messages from the console about its operations.

8.1.1c Menus

The following menus are available from the console's menu bar.

File

New Cluster – Create a new cluster node in the clusters panel.
Quit – Shut down the console application. Has no effect on the cluster except to reduce load if the
console has been recording statistics or profiling locks.

Tools

Show SVT – Opens the Terracotta Snapshot Visualization Tool.
Options – Opens the Options dialog box (see Runtime Statistics).

Help

Developer Console Help – Go to the Developer Console documentation.
Visit Terracotta Forums – Go to the community forums to post questions and search for topics.
Contact Terracotta Technical Support – Go to the contact page for Terracotta technical support.
Check for Updates – Automatically check for updates to Terracotta.
Check Server Version – Automatically check for console-server version mismatch.
About Terracotta Developer Console – Display information on Terracotta and the local host.

8.1.1d Context-Sensitive Help

Context-sensitive help is available wherever (help button) appears in the Terracotta Developer Console.

Click in a console panel to open a web-browser page containing help on the features in that panel.

8.1.1e Context Menus

Some console features have a context menu accessed by right-clicking the feature. For example, to open a
context menu for creating a new cluster root in the clusters panel, right-click in the clusters panel.

8.1.2 Working with Clusters
Clusters are the highest-level nodes in the expandable cluster list displayed by the Terracotta Developer
Console. A single Terracotta cluster defines a domain of Terracotta server instances and clients (application
servers) being clustered by Terracotta. A single Terracotta cluster can have one or more servers and one or
more clients. For example, two or more Terracotta servers configured as a server array, along with their
clients, appear under the same cluster.

The Cluster Panel displays Terracotta application quick-view
buttons as well as the cluster list. Click a quick-view button to go
to a Terracotta application’s panel, or click the name of the
application under the My Application node. If an application is
not running in the cluster, its quick-view button opens an
informational window.

8.1.2a Adding and Removing Clusters

To add a new cluster reference, choose New cluster from the
File or context menu.

The cluster topology is determined from the server specified in
the connection panel's Server Host and JMX Port fields. These
fields are editable when the console is not connected to the
cluster.

To remove an existing cluster reference, right-click the cluster in
the cluster list to open the context menu, then choose Delete .

8.1.2b Connecting to a cluster

To connect to an existing cluster, select the cluster node in the
cluster list, then click the Connect button in the
connect/disconnect panel. You can also connect to a specific cluster by choosing Connect from its context
menu. After a successful connection, the cluster node becomes expandable and a connection message

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

106 of 162 2011-06-03 11:26

appears in the status bar.

To automatically connect to a cluster whenever the Terracotta Developer Console starts or when at least one
of the cluster's servers is running, enable Auto-connect in the cluster context menu. Automatic connections
are attempted in the background and do not interfere with normal console operation.

8.1.2c Connecting to a Secured Cluster

A Terracotta cluster can be secured for JMX access, requiring
authentication before access is granted. Connecting to a secured
cluster prompts users to enter a username and password.

For instructions on how to secure your Terracotta cluster for JMX, see
Cluster Security.

8.1.2d Disconnecting from a Cluster

To disconnect from a cluster, select that cluster's node in the on the clusters panel and either click the
Disconnect button above the help panel or select Disconnect from the cluster context menu.

8.1.3 Enterprise Ehcache Applications
If you are using Enterprise Ehcache with your application, the Ehcache views are available. These views offer
the following features:

Deep visibility into cached data
Controls for enabling, disabling, and clearing all CacheManager caches
Per-cache controls for enabling, disabling, clearing, and setting consistency
Live statistics for the entire cluster, or per CacheManager, cache, or client
Graphs with performance metrics for cache activity
Historical data for trend analysis
Parameters for control over the size and efficiency of cache regions
A configuration generator

To access the Ehcache views, expand the My application node in the cluster navigation pane, then click the
Ehcache node. If your cluster has more than one CacheManager, use the Cache Manager drop-down menu
(available in all Ehcache panels) to choose the caches you want to view.

8.1.3a Overview Panel

The Overview panel lists all client nodes in the cluster running the CacheManager selected in the Cache
Manager drop-down menu. Any operations, such as clearing cache content, performed on the caches or

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

107 of 162 2011-06-03 11:26

nodes listed in this panel affect only caches belonging to the selected CacheManager.

The nodes are listed in a summary table with the following columns:

Node – The address of the client where the current CacheManager is running.
Caches – The number of caches resident on the client.
Enabled – The number of caches that are available to the application. Get operations will return data
from an enabled cache or cause the cache to be updated with the missing data. Get operations return
null from disabled caches, which are never updated.
Bulkload – The number of caches whose data was loaded using the Bulk-Load API.
Statistics – The number of caches from which the console is gathering statistics. Caches with disabled
statistics gathering do not appear in the Performance or Statistics panels and do not contribute to
aggregate statistics. If all caches have statistics disabled, the Performance or Statistics panels cannot
display any statistics.

Selecting a node displays a secondary table summarizing the caches resident on that node. The caches table
has the following columns:

Cache – The name of the cache.
Terracotta-clustered – Indicates whether the cache is clustered (green checkmark) or not (red X).
Enabled – Indicates whether the cache is available to the application (green checkmark) or not (red X).
Get operations will return data from an enabled cache or cause the cache to be updated with the
missing data. Get operations return null from disabled caches, which are never updated.
Bulkload – Indicates whether the cache is in bulk-load mode (green checkmark) or not (red X). For
more on bulk loading, see 2.2.3 Bulk-Load API.
Consistency – Indicates what mode of data consistency the cache is in. Available modes are STRONG
and EVENTUAL. For more on cache consistency, see 2.3.1d Terracotta Clustering Configuration
Elements.
Statistics – Indicates whether the console is collecting statistics from the cache (green checkmark) or
not (red X). Caches with disabled statistics gathering do not appear in the Performance or Statistics
panels and do not contribute to aggregate statistics. If all caches have statistics disabled, the
Performance or Statistics panels cannot display any statistics.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

108 of 162 2011-06-03 11:26

TIP: Keeping Statistics On

By default, statistics are off for caches to improve performance. Each time you start the Terracotta
Developer Console and connect to a client, the client’s caches will have statistics off again even if
you turned statistics on previously.

To change this behavior for a cache so that statistics remain on, use Ehcache configuration:
<cache name="myCache" ... statistics="true" >
...
</cache>

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

109 of 162 2011-06-03 11:26

You can also set the view to list the selected CacheManager’s caches in the summary table instead of the
nodes. In this case, in its first column the secondary table lists the nodes on which the cache is resident.

TIP: Working With the Overview User Interface

- To work with a tree view of nodes, caches, and CacheManager instances, use the control buttons arranged
at the top of the panel to open a dialog box.

- To save any changes you make in a dialog box, click OK . To discard changes, click Cancel .

- You can also select caches or nodes and use the context menu to perform operations.

Enable/Disable Caches

Click Manage Active Caches to open the Manage Active Caches window. This window gives you fine-grained
control over enabling caches.

To enable (or disable) caches by CacheManager instances, choose CacheManager Instances (at the top of the
Manage Active Caches window), then select (enable) or unselect (disable) from the hierarchy displayed.

To enable (or disable) caches by a specific cache, choose Caches (at the top of the Manage Active Caches
window), then select (enable) or unselect (disable) from the hierarchy displayed.

To save any changes you make in this window, click OK . To discard changes, click Cancel .

You can also select caches or nodes and use the context menu to enable/disable the selected caches or all
caches on the selected node.

Enable/Disable Cache Bulk Loading

Click Cache Bulk Loading to open the Manage Bulk Load Mode window. This window gives you fine-grained
control over enabling cache bulk-load mode.

To enable (or disable) bulk loading by CacheManager instances, choose CacheManager Instances (at the top
of the Manage Bulk Load Mode window), then select (enable) or unselect (disable) from the hierarchy
displayed.

To enable (or disable) bulk loading for a specific cache, choose Caches (at the top of the Manage Bulk Load
Mode window), then select (enable) or unselect (disable) from the hierarchy displayed.

To save any changes you make in this window, click OK . To discard changes, click Cancel .

You can also select caches or nodes and use the context menu to enable/disable coherence for the selected
caches or for all caches on the selected node.

Enable/Disable Cache Statistics

Click Cache Statistics to open the Manage Cache statistics . This window gives you fine-grained control over
enabling statistics gathering. To save any changes you make in this window, click Enable Cache Statistics . To
discard changes, click Cancel .

Caches with disabled statistics gathering do not appear in the Performance or Statistics panels and do not
contribute to aggregate statistics. If all caches have statistics disabled, the Performance or Statistics panels
cannot display any statistics.

To enable (or disable) statistics gathering by CacheManager instances, choose CacheManager Instances (at
the top of the Manage Cache statistics window), then select (enable) or unselect (disable) from the
hierarchy displayed.

To enable (or disable) statistics gathering for a specific cache, choose Caches (at the top of the Manage
Cache statistics window), then select (enable) or unselect (disable) from the hierarchy displayed.

You can also select caches or nodes and use the context menu to enable/disable statistics for the selected
caches or for all caches on the selected node.

Clear Caches

Click Clear Cache Contents to open a dialog for clearing caches.

You can also clear caches using different context menus:

To clear the data from all caches in node, select the node, then choose Clear Caches from the node’s
context menu.
To clear the data from all caches in all nodes, select all nodes, then choose Clear Caches from the
nodes context menu.
To clear the data from a specific cache (or caches) in a node, select the node, select the cache (or
caches) in the cache summary table, then choose Clear Caches from the cache’s context menu.

Cache Configuration

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

110 of 162 2011-06-03 11:26

Click Cache Configuration to open a dialog with editable cache configuration. See 8.1.3d Editing Cache
Configuration for more information on editing cache configurations in the Terracotta Developer Console.

To view the Ehcache in-memory configuration file of a node, select the node, then choose Show
Configuration from the context menu.

To view the Ehcache in-memory configuration of a cache, select the cache, then choose Show Configuration
from the context menu.

8.1.3b Performance Panel

The Performance panel displays real-time performance statistics for both Global Cache Performance
(aggregated from all caches) and Per-Cache Performance . The Performance panel is useful for viewing
current activity in clustered caches.

Performance statistics are displayed as color-coded bar graphs with current values shown on the left end and
"high-water" (current maximum) values shown on the right end:

Hits – (Green) Counts get operations that return data from the cache.
Puts – (Blue) Counts each new (or updated) element added to the cache.
Misses – (Red) Counts each cache miss; each miss causes data fault-in from outside the cache.

TIP: The Relationship of Puts to Misses

The number of puts can be greater than the number of misses because updates are counted as puts.
For more information on how cache events are configured and handled, see 2.3.1f Cache Events
Configuration.

If the Performance panel is selected and statistics gathering is disabled for all caches, a warning dialog
appears. This dialog offers three choices:

Click OK to enable statistics gathering for all caches.
Click Advanced to open the Manage Statistics window and set statistics gathering for individual caches
(see the Overview Panel for more information).
Click Cancel to leave statistics gathering off.

NOTE: Statistics and Performance

Gathering statistics may have a negative impact on overall cache performance.

8.1.3c Statistics Panel

The Statistics panel displays cache statistics in history graphs and a table. The graphs are useful for
recognizing trends, while the table presents a snapshot of statistics and can display ordered high-low lists
based on the counts shown.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

111 of 162 2011-06-03 11:26

If the Performance panel is selected and statistics gathering is disabled for all caches, a warning dialog
appears. This dialog offers three choices:

Click OK to enable statistics gathering for all caches.
Click Advanced to open the Manage Statistics window and set statistics gathering for individual caches
(see the Overview Panel for more information).
Click Cancel to leave statistics gathering off.

NOTE: Statistics and Performance

Gathering statistics may have a negative impact on overall cache performance.

Some of the main tasks you can perform in this panel are:

View cache statistics for the entire cluster.
View cache statistics for each Terracotta client (application server).

Cache statistics are sampled at the rate determined by the rate set in the Options dialog box (see Runtime
Statistics).

Use the following controls to control the statistics:

Select View – Set the scope of the statistics display using the Select View menu. To view statistics for
the entire cluster, select Cluster stats . To view statistics for an individual Terracotta client
(application server), choose that client from the Per Client View submenu.
Subpanel – Click the button for the subpanel you want to view (Usage, Search, JTA, or Write-Behind).
Refresh – Click Refresh to force the console to immediately poll for statistics. A refresh is executed
automatically each time a new view is chosen from the Select View menu.
Clear – Click Clear Statistics to wipe the current display of statistics. Restarts the recording of statistics
(zero out all values).

Cache Statistics Usage Graphs

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

112 of 162 2011-06-03 11:26

The line graphs available display the following statistics over time:

Cache Hit Ratio – The ratio of cache hits to get attempts. A ratio of 1.00 means that all requested data
was obtained from the cache (every put was a hit). A low ratio (closer to 0.00) implies a higher
number of misses that result in more faulting of data from outside the cache.
Cache Hit/Miss Rate – The number of cache hits per second (green) and the number of cache misses
per second (red). Current values are overlaid on the graph. An effective cache shows a high number of
hits relative to misses.
Cache Update Rate – The number of updates to elements in the cache, per second. The current value
is overlaid on the graph. A high number of updates implies a high eviction rate or rapidly changing
data.
Cache Put Rate – The number of cache puts executed per second. The current value is overlaid on the
graph. The number of puts always equals or exceeds the number of misses, since every miss leads to a
put. In addition, updates are also counted as puts. Efficient caches have a low overall put rate.

Cache Statistics Table

The cache statistics table displays a snapshot of the following statistics for each cache:

Name – The name of the cache as it is configured in the CacheManager configuration resource.
Hit Ratio – The aggregate ratio of hits to gets.
Hits – The total number of successful data requests.
Misses – The total number of unsuccessful data requests.
Puts – The total number of new (or updated) elements added to the cache.
Updates – The total number of updates made to elements in the cache.
Expired – The total number of expired cache elements.
Removed – The total number of evicted cache elements.
In-Memory Size – The total number of elements in the cache on the client selected in Select View . This
statistic is not available in the cluster-wide view.
On-disk Size – The total number of elements in the cache. Even when a client is selected in Select View
, this statistic always displays the cluster-wide total.

TIP: Working With the Statistics Table

- The snapshot is refreshed each time you display the Statistics panel. To manually refresh the table,
click Refresh .

- The fully qualified name of a cache shown in a table may be abbreviated. You can view the
unabbreviated name in a tooltip by placing the mouse pointer over the abbreviated name. You can
also view the full name of a cache by expanding the width of the Name column.

- You can view the total sum of a column of numbers (such as Misses or Puts) in a tooltip by placing
the mouse pointer anywhere in the column.

- To order a table along the values of any column, double-click its heading. An arrow appears in the
column heading to indicate the direction of the order. You can reverse the order by double-clicking
the column head again.

Cache Statistics Search Graphs

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

113 of 162 2011-06-03 11:26

The search-related historical graphs provide a view into how quickly cache searches are being performed.
The search-rate graph displays how many searches per second are being executed. The current values for
these metrics are also displayed. The search-time graph displays how long each search operation takes. A
correlation between how long searches are taking and how many are executed may be seen over time.

Cache Statistics JTA Graphs

The JTA historical graphs display the transaction commit and rollback rates as well as the current values for
those rates. For more information about transactional caches, see 2.3.8 Working With Transactional Caches.

Cache Statistics Write-Behind Graphs

The Write-Behind historical graph displays the total number of writes in the write-behind queue or queues
(blue line), as well as the current value. The graph also displays the maximum number of pending writes, or
the number of elements that can be stored in the queue while waiting to be processed (red line). This value
is derived from the <cacheWriter /> attribute writeBehindMaxQueueSize . Note that a value of zero
("0") sets no limit on the number of elements that can be in the queue. For more information on the write-
behind queue, see 2.2.7 Write-Behind Queue in Enterprise Ehcache.

8.1.3d Editing Cache Configuration

In the Overview panel, click Cache Configuration to open the Manage Cache Configuration dialog. The dialog
displays a table of existing clustered and unclustered caches with storage and eviction properties. The
configuration shown is loaded from the initial configuration resource. For example, if the CacheManager is
initialized with a configuration file, the values from that file appear in Configuration panel.

The cache-configuration tables display the following editable configuration properties for each cache:

Cache – The name of the cache as it is configured in the CacheManager configuration resource. Since

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

114 of 162 2011-06-03 11:26

unclustered caches, also called standalone caches, are local only, a drop-down menu allowing you to
select the standalone caches CacheManager is provided for their table.
Max Memory Elements – The maximum number of elements allowed in the cache in any one client (any
one application server). If this target is exceeded, eviction occurs to bring the count within the
allowed target. 0 means no eviction takes place (infinite size is allowed).
Max Disk Elements – The maximum total number of elements allowed in the cache in all clients (all
application servers). If this target is exceeded, eviction occurs to bring the count within the allowed
target. 0 means no eviction takes place (infinite size is allowed).
Time-To-Idle (TTI) – The maximum number of seconds an element can exist in the cache without being
accessed. The element expires at this limit and will no longer be returned from the cache. 0 means no
TTI eviction takes place (infinite lifetime).
Time-To-Live (TTL) – The maximum number of seconds an element can exist in the cache regardless of
use. The element expires at this limit and will no longer be returned from the cache. 0 means no TTL
eviction takes place (infinite lifetime).

NOTE: Setting Eviction in Caches

Having the values of TTI, TTL, Max Memory Elements, and Max Disk Elements all set to 0 for a cache in
effect turns off all eviction for that cache. Unless you want cache elements to never be evicted from
a cache, you should set these properties to non-zero values that are optimal for your use case.

To edit a configuration property, click the field holding the value for that property, then type a new value.
Changes are not saved to the cache configuration file and are not persisted beyond the lifetime of the
CacheManager.

To create a configuration file based on the configuration shown in the panel, select a node in the Overview
panel and choose Show Configuration to open a window containing a complete Ehcache configuration file.
Copy this configuration and save it to a configuration file loaded by the CacheManager (for example,
ehcache.xml).

To get the configuration for a single cache, select the cache in the Overview panel and choose Show
Configuration to open a window containing the cache’s configuration.

For more information on the Enterprise Ehcache configuration file, see Ehcache Configuration File.

8.1.4 Enterprise Ehcache for Hibernate Applications
If you are using Enterprise Ehcache with your Hibernate-based application, the Hibernate and second-level
cache views are available. These views offer you the following:

Deep visibility into Hibernate and cached data
Live statistics
Graphs, including puts and misses
Historical data for trend analysis
Parameters for control over the size and efficiency of cache regions
A configuration generator

To access the Hibernate and second-level cache views, expand the My application node in the cluster
navigation pane, then click the Hibernate node.

NOTE: Statistics and Performance

Each time you connect to the Terracotta cluster with the Developer Console, Hibernate and cache statistics
gathering is automatically started. Since this may have a negative impact on performance, consider
disabling statistics gathering during performance tests and in production. To disable statistics gathering,
navigate to the Overview panel in the second-level cache view, then click Disable Statistics .

Use the view buttons to choose Hibernate (Hibernate statistics) or Second-Level Cache (second-level cache
statistics and controls).

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

115 of 162 2011-06-03 11:26

TIP: Working With the User Interface

The following are productivity tips for using the Developer Console:

- The fully qualified name of a region, entity, or collection shown in a table may be abbreviated. You can
view the unabbreviated name in a tooltip by placing the mouse pointer over the abbreviated name. Note
that expanding the width of a column does not undo abbreviations.

- Queries are not abbreviated, but can still appear to be cut off by columns that are too narrow. To view
the full query string, you can expand the column or view the full query string in a tooltip by placing the
mouse pointer over the cut-off query string.

- You can view the total sum of a column of numbers (such as Hibernate Inserts) in a tooltip by placing the
mouse pointer anywhere in the column.

- To order a table along the values of any column, double-click its heading. An arrow appears in the column
heading to indicate the direction of the order. You can reverse the order by double-clicking the column
head again.

- Some panels have a Clear All Statistics button. Clicking this button clears statistics from the current panel
and all other Hibernate and cache panels that display statistics.

- If your cluster has more than one second-level cache, use the Persistence Unit drop-down menu
(available in all panels) to choose the cache you want to view.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

116 of 162 2011-06-03 11:26

Hibernate View

Click Hibernate view to display a table of Hibernate statistics. Some of the main tasks you can perform in this
view are:

View statistics for the entire cluster on Hibernate entities, collections, and queries.
View statistics for each Terracotta client (application server) on Hibernate entities, collections, and
queries.

Hibernate statistics are sampled at the rate determined by the rate set in the Options dialog box (see
Runtime Statistics). Use the controls that appear below the statistics table to update the statistics:

Refresh – Click Refresh to force the console to immediately poll for statistics.
Clear – Click Clear All Statistics to wipe the current display of statistics.

You can set the scope of the statistics display using the Select View menu. To view statistics for the entire
cluster, select Cluster stats . To view statistics for an individual Terracotta client (application server), choose
that client from the Per Client View submenu.

Entities

Click Entities to view the following standard Hibernate statistics on Hibernate entities in your application:

Name
Loads
Updates
Inserts
Deletes
Fetches
Optimistic Failures

Collections

Click Collections to view the following standard Hibernate statistics on Hibernate collections in your
application:

Role
Loads
Fetches
Updates
Removes
Recreates

Queries

Click Queries to view the following standard Hibernate statistics on Hibernate queries in your application:

Query
Executions
Rows
Avg Time (Average Time)
Max Time (Maximum Time)
Min Time (Minimum Time)

8.1.4a Second-Level Cache View

The second-level cache view provides performance statistics and includes per-region cache configuration.
Some of the main tasks you can perform in this view are:

View both live and historical performance metrics in graphs.
Enable and disable cache regions.
Flush cache regions.
Set eviction parameters per region.
Generate a configuration file based on settings in the Second-Level Cache view.

Overview

The Overview panel displays the following real-time performance statistics for both Global Cache
Performance (covering the entire cache) and Per-Region Cache Performance:

Hits – (Green) Counts queries that return data from the second-level cache.
Puts – (Blue) Counts each new (or updated) element added to the cache.
Misses – (Red) Counts each cache miss; each miss causes data fault-in from the database.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

117 of 162 2011-06-03 11:26

TIP: The Relationship of Puts to Misses

The number of puts can be greater than the number of misses because updates are counted as puts.

These statistics are displayed as color-coded bar graphs with current values shown on the left end and "high-
water" (current maximum) values shown on the right end.

The Overview panel provides the following controls:

Enable All Cache Regions – Turns on all configured cache regions.
Disable All Cache Regions – Turns off all configured cache regions shown.
Evict All Entries – Removes all entries from the cache (clears the cache).
Disable Statistics – Turns off the gathering of statistics. Only DB SQL Execution Rate (queries per
second), In-Memory Count , and Total Count of cache elements continue to function. When statistics
gathering is off, this button is called Enable Statistics . Gathering statistics may have a negative impact
on performance.
Clear All Statistics – Restart the recording of statistics (zero out all values).

Statistics

The Statistics panel displays second-level cache statistics in history graphs and a table. The graphs are useful
for recognizing trends, while the table presents a snapshot of statistics.

Some of the main tasks you can perform in this panel are:

View cache statistics for the entire cluster.
View cache statistics for each Terracotta client (application server).

Cache statistics are sampled at the rate determined by the rate set in the Options dialog box (see Runtime
Statistics). Use the controls that appear below the statistics table to update the statistics:

Refresh – Click Refresh to force the console to immediately poll for statistics.
Clear – Click Clear All Statistics to wipe the current display of statistics.

You can set the scope of the statistics display using the Select View menu. To view statistics for the entire
cluster, select Cluster stats . To view statistics for an individual Terracotta client (application server), choose
that client from the Per Client View submenu.

Cache Statistics Graphs

The line graphs available display the following statistics over time:

Cache Hit Ratio – The ratio of cache hits to queries. A ratio of 1.00 means that all queried data was
obtained from the cache. A low ratio (closer to 0.00) implies a higher number of misses that result in
more faulting of data from the database.
Cache Hit/Miss Rate – The number of cache hits per second (green) and the number of cache misses
per second (red). Current values are overlaid on the graph.
DB SQL Execution Rate – The number of queries executed per second. The current value is overlaid on
the graph.
Cache Put Rate – The number of cache puts executed per second. The number of puts always equals or
exceeds the number of misses, since every miss leads to a put. The current value is overlaid on the
graph.

Cache Statistics Table

The cache statistics table displays a snapshot of the following statistics for each region:

Region – The fully qualified name of the region (abbreviated).
Hit Ratio – The aggregate ration of hits to queries.
Hits – The total number of successful queries on the cache.
Misses – The total number of unsuccessful queries on the cache.
Puts – The total number of new (or updated) elements added to the cache.
In-Memory Count – The total number of cache elements in the region on the client selected in Select
View . This statistic is not available in the cluster-wide view.
Total Count – The total number of cache elements in the region. Even when a client is selected in
Select View , this statistic always displays the cluster-wide total.
Hit Latency – The time (in milliseconds) it takes to find an element in the cache. Long latency times
may indicate that the cache element is not available locally and is being faulted from the Terracotta
server.
Load Latency – The time (in milliseconds) it takes to load an entity from the database after a cache
miss.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

118 of 162 2011-06-03 11:26

The snapshot is refreshed each time you display the Statistics panel. To manually refresh the table, click
Refresh .

Configuration

The Configuration panel displays a table with the following configuration properties for each cache region:

Region – The fully qualified name of the region (abbreviated).
Cached – Whether the region is currently being cached ("On") or not ("Off").
TTI (Time to idle) – The maximum number of seconds an element can exist in the cache without being
accessed. The element expires at this limit and will no longer be returned from the cache. 0 means no
TTI eviction takes place (infinite lifetime).
TTL (Time to live) – The maximum number of seconds an element can exist in the cache regardless of
use. The element expires at this limit and will no longer be returned from the cache. 0 means no TTL
eviction takes place (infinite lifetime).
Target Max In-Memory Count – The maximum number of elements allowed in a region in any one client
(any one application server). If this target is exceeded, eviction occurs to bring the count within the
allowed target. 0 means no eviction takes place (infinite size is allowed).
Target Max Total Count – The maximum total number of elements allowed for a region in all clients (all
application servers). If this target is exceeded, eviction occurs to bring the count within the allowed
target. 0 means no eviction takes place (infinite size is allowed).

NOTE: Setting Eviction in Caches

Having the values of TTI, TTL, Max Memory Elements, and Max Disk Elements all set to 0 for a cache in
effect turns off all eviction for that cache. Unless you want cache elements to never be evicted from
a cache, you should set these properties to non-zero values that are optimal for your use case.

Configuration is loaded from the initial configuration resource. For example, if the second-level cache is
initialized with a configuration file, the values from that file appear in Configuration panel.

Region Operations

To stop a region from being cached, select that region in the configuration table, then click Disable Region .
Disabled regions display "Off" in the configuration table's Cached column. Queries for elements that would be
cached in the region must go to the database to return the desired data.

To return a region to being cached, select that region in the configuration table, then click Enable Region .
Disabled regions display "On" in the configuration table's Cached column.

To clear a region, select that region in the configuration table, then click Evict All Entries in Cache . This
operation removes from all clients all of the entries that were cached in that region.

If you are troubleshooting or otherwise require more detailed visibility into the workings of the second-level
cache, enable Logging enabled .

Region Settings

To change the configuration for a region, select that region in the configuration table, then change the
values in the fields provided:

Time to idle
Time to live
Target max total count
Target max in-memory count

You can also turn logging on for the region by selecting Logging enabled .

The settings you change in the second-level cache view are not saved to the cache configuration file and are
not persisted beyond the lifetime of the cache. To create a configuration file based on the configuration
shown in the second-level cache view, click Generate Cache Configuration... to open a window containing a
complete configuration file. Copy this configuration and save it to a configuration file loaded by the used for
configuring the second-level cache (such as the default ehcache.xml). For more information on
Enterprise Ehcache configuration file, see Ehcache Configuration File.

8.1.5 Clustered Quartz Scheduler Applications
The Terracotta JobStore for Quartz Scheduler clusters the Quartz job-scheduling service. If you are clustering
Quartz Scheduler, the Quartz view is available. The Quartz view offers the following features:

Activity meters
Start/stop and pause controls for schedulers, job groups, and jobs
Job execution history

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

119 of 162 2011-06-03 11:26

Ability to delete individual job details

To access the Quartz view, expand the My application node in the cluster navigation pane, then click the
Quartz node.

Choose the scheduler to display from the Quartz Schedulers menu, available at the top of any of the Quartz
view’s panels. For the currently chosen scheduler, the Quartz view provides the following panels:

Overview

The Overview panel displays the following real-time cluster-wide activity meters:

Scheduled – (Green) Shows count of new jobs scheduled at the time of polling.
Executing – (Yellow) Shows count of currently executing jobs.
Completed – (Red) Shows count of jobs that have completed at the time of polling.

These counts are displayed as color-coded bar graphs with current values shown on the left end and "high-
water" (current maximum) values shown on the right end. If statistics are disabled, no counts are displayed
on the activity meters (see below for how to enable statistics).

The Overview panel provides the following controls:

Stop Scheduler – Stop (destroy) the currently selected scheduler. The scheduler cannot be restarted.
Pause Scheduler – Suspend the scheduler from any activity. When a scheduler is paused, click Resume
Scheduler to restart it.
Disable Statistics – Turns off the gathering of statistics. When statistics gathering is off, this button is
called Enable Statistics . Gathering statistics may have a negative impact on performance.

The panel also displays a summary of properties for the selected scheduler.

Jobs

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

120 of 162 2011-06-03 11:26

The Jobs panel displays information about the jobs and triggers managed by the selected scheduler. The
Jobs panel is composed of the following:

Job Details Subpanel

Contains an expandable/collapsible list of job groups. When expanded, each job-group node lists its jobs,
and each job lists its triggers when it’s expanded. Selecting a node displays context-sensitive controls
(buttons) along the top of the subpanel:

Group selected – Pause Job Group (Resume Job Group). These controls also appear in the node’s
context menu.
Job selected – Delete Job , Schedule Job . These controls also appear in the node’s context menu
along with Pause Job (Resume Job), Trigger Job .
Trigger selected – Pause Trigger (Resume Trigger). These controls, along with Pause All Triggers
(pauses all triggers for the job) and Unschedule Job (removes the trigger from the job), also appear in
the node’s context menu.

Triggers subpanel

Contains an expandable/collapsible list of trigger groups. When expanded, each trigger-group node lists its
triggers. The control Pause All Triggers appears along the top of the panel and will pause all triggers in the
selected trigger group.

Selecting a node displays additional context-sensitive controls (buttons) along the top of the subpanel:

Trigger group selected – Pause Trigger Group (Resume Trigger Group). These controls also appear in
the node’s context menu.
Trigger selected – Pause Trigger (Resume Trigger). These controls also appear in the node’s context
menu.

Job Execution History table

The Job Execution History table lists the jobs that have been run by the selected scheduler. The table shows
the following data:

Job Name
Trigger Name
Refires (number of times job has been refired)
Fire Time
Scheduled Fire Time
Previous Fire (time)
Next Fire (time)
Job Completion Time (milliseconds)

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

121 of 162 2011-06-03 11:26

The table can be cleared by selecting Clear from its context (right-click) menu.

8.1.6 Clustered HTTP Sessions Applications
If you are clustering Web sessions, the HTTP sessions view is available. The sessions view offers the following
features:

Live statistics
Graphs, including session creation, hop, and destruction rates
Historical data for trend analysis
Ability to expire any individual session or all sessions

To access the HTTP Sessions view, expand the My application node in the cluster navigation pane, then click
the HTTP Sessions node.

NOTE: Statistics and Performance

Each time you connect to the Terracotta cluster with the Developer Console, statistics gathering is
automatically started. Since this may have a negative impact on performance, consider disabling statistics
gathering during performance tests and in production. To disable statistics gathering, navigate to the
Overview or Runtime Statistics panel, then click Disable Statistics . The button’s name changes to Enable
Statistics .

The HTTP Sessions view has the following panels:

Overview

The Overview panel displays the following real-time performance statistics:

Sessions Created – (Green) Counts new sessions.
Sessions Hopped – (Yellow) Counts each time a session changes to another application server.
Sessions Destroyed – (Red) Counts each time a session is torn down.

These statistics are displayed as color-coded bar graphs with current values shown on the left end and "high-
water" (current maximum) values shown on the right end.

The Overview panel provides the following controls:

Expire All Sessions – Close all sessions.
Disable Statistics – Turns off the gathering of statistics. When statistics gathering is off, this button is
called Enable Statistics . Gathering statistics may have a negative impact on performance.

Statistics

The Statistics panel displays session statistics in history graphs and a table. The graphs are useful for
recognizing trends, while the table presents a snapshot of statistics.

Some of the main tasks you can perform in this panel are:

View session statistics for the entire cluster.
View session statistics for each Terracotta client (application server).

Session statistics are sampled at the rate determined by the rate set in the Options dialog box (see Runtime
Statistics). Use the controls that appear below the statistics table to update the statistics:

Refresh – Click Refresh to force the console to immediately poll for statistics.
Clear – Click Clear All Statistics to wipe the current display of statistics.

You can set the scope of the statistics display using the Select View menu. To view statistics for the entire
cluster, select Cluster stats . To view statistics for an individual Terracotta client (application server), choose
that client from the Per Client View submenu.

session Statistics Graphs

The line graphs available display the following statistics over time:

Active Sessions – The number of active sessions. The current total is overlaid on the graph.
Session Creation Rate – The number of sessions being created per second. The current rate is overlaid
on the graph.
Session Destruction Rate – The number of sessions being torn down per second. The current rate is
overlaid on the graph.
Session Creation Rate – The number of sessions that have changed application servers, per second. The
current rate is overlaid on the graph.

Session Statistics Table

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

122 of 162 2011-06-03 11:26

The session statistics table displays a snapshot of the following statistics for each clustered application:

App – The hostname and application context.
Active Sessions – The aggregate number of active sessions.
Sessions Created – The total number of sessions created.
Sessions Destroyed – The total number of sessions destroyed.
Sessions Hopped – The total number of sessions hopped.

The snapshot is refreshed each time you display the Statistics panel. To manually refresh the table, click
Refresh .

Browse

The Browse panel lists active sessions. Click Get Sessions to obtain or refresh the list session IDs of all active
sessions. The session IDs are sorted from most recently created sessions at the top of the list to oldest sessions
at the bottom.

To view the attributes and attribute values for a session, select the session ID. The session’s existing
attributes and values are displayed in the panel below

To manually expire a session, select the session’s ID and open its context menu (for example, right-click on
the session ID), then choose Expire from the context menu.

8.1.7 Working with Terracotta Server Arrays
Terracotta servers are arranged in mirror groups , each of which contains at least one active server instance.
A High Availability mirror group also contains one backup server instance, sometimes called a passive server
or "hot standby." Under the Topology node, a Server Array node lists all of the mirror groups in the cluster.

To view a table of mirror groups with their group IDs, expand the Topology node, then click Server Array .

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

123 of 162 2011-06-03 11:26

To view a table of the servers in a mirror group, expand the Server Array node, then click the mirror group
whose servers you want to display. The table of servers includes each server's status and name, hostname or
IP address, and JMX port.

To view the servers' nodes under a mirror-group node, expand the mirror-group node.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

124 of 162 2011-06-03 11:26

8.1.7a Server Panel

Selecting a specific server's node displays that server's panel, with the Main , Environment , Config , and
Logging Settings tabs.

The Main tab displays the server status and a list of properties, including the server's IP address, version,
license, and persistence and failover modes.

The Environment tab displays the server's JVM system properties and provides a Find tool.

The Config tab displays the Terracotta configuration the server is using and provides a Find tool.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

125 of 162 2011-06-03 11:26

GREEN Active
The server is connected and
ready for work.

The Logging Settings tab displays logging options, each of which reports on data captured in five-second
intervals:

FaultDebug – Logs the types of objects faulted from disk and the number of faults by type.
RequestDebug – Logs the types of objects requested by clients and the number of requests by type.
FlushDebug – Logs the types of objects flushed from clients and a count of flushes by type.
BroadcastDebug – Logs the types of objects that changed and caused broadcasts to other clients, and a
count of those broadcasts by type.
CommitDebug – Logs the types of objects committed to disk and a count of commits by type.

8.1.7b Connecting and Disconnecting from a Server

The Terracotta Developer Console connects to a cluster through one of the cluster's Terracotta servers. Being
connected to a server means that the console is listening for JMX events coming from that server.

NOTE: Inability to Connect to Server

If you have confirmed that a Terracotta server is running, but the Terracotta Developer Console is unable to
connect to it, a firewall on your network could be blocking the server's JMX port.

The console is disconnected from a cluster's servers when it's disconnected from the cluster. The console is
also disconnected from a server when that server is shut down, even though the server may still appear in
the console as part of the cluster. A server's connection status is indicated by its status light (see Server Status
(server-stat)).

Note that disconnecting from a server does not shut the server down or alter its status in the cluster. Servers
can be shut down using the stop-tc-server script (see Start and Stop Server Scripts (start-tc-server, stop-tc-
server)).

TIP: Server Shutdown Button

A server shutdown button is available in the Terracotta Operations Center .

8.1.7c Server Connection Status

A Terracotta server's connection status is indicated by a status light next to the server's name. The light's
color indicates the server's current connection status. A cluster can have one server, or be configured with
multiple servers that communicate state over the network or use a shared file-system.

The following table summarizes the connection status lights.

Status Light Server Status Notes

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

126 of 162 2011-06-03 11:26

RED Unreachable
The server, or the network
connection to the server, is
down.

YELLOW Starting or Standby

A server is starting up; in a
disk-based multi-server cluster, a
passive server goes into standby
mode until a file lock held by the
active server is released.
Normally the file lock is released
only when the active server fails.
The passive will then move to
ACTIVE state (green status light).

ORANGE Initializing

In a network-based multi-server
cluster, a passive server must
initialize its state before going
into standby mode.

CYAN Standby

In a network-based multi-server
cluster, a passive server is ready
to become active if the active
server fails.

8.1.8 Working with Clients
Terracotta clients that are part of the cluster appear under the Connected clients node. To view the
Connected clients node, expand the Topology node. The Connected clients panel displays a table of
connected clients. The table has the following columns:

Host - The client machine's hostname.
Port - The client's DSO Port.
ClientID - The client's unique ID number.
Live Objects - The number of shared objects currently in the client's heap.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

127 of 162 2011-06-03 11:26

To view the client nodes that appear in the Connected clients panel, expand the Connected clients node.

8.1.8a Client Panel

Selecting a specific client's node displays that client's panel, with the Main , Environment , Config , and
Logging tabs.

The Main tab displays a list of client properties such as hostname and DSO port.

The Environment tab displays the client's JVM system properties and provides a Find tool.

The Config tab displays the Terracotta configuration the client is using and provides a Find tool.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

128 of 162 2011-06-03 11:26

The Logging tab displays options to add logging items corresponding to DSO client debugging. See the
Configuration Guide and Reference for details on the various debug logging options.

8.1.8b Connecting and Disconnecting Clients

When started up properly, a Terracotta client is automatically added to the appropriate cluster.

When a Terracotta client is shut down or disconnects from a server, that client is automatically removed
from the cluster and no longer appears in the Terracotta Developer Console .

TIP: Client Disconnection

A client disconnection button is available in the Terracotta Operations Center .

8.1.9 Monitoring Clusters, Servers, and Clients
The Terracotta Developer Console provides visual monitoring functions using dials, icons, graphs, statistics,
counters, and both simple and nested lists. You can use these features to monitor the immediate and overall
health of your cluster as well as the health of individual cluster components.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

129 of 162 2011-06-03 11:26

Client Flush and Fault Rate Graphs

Client flush and fault rates are a measure of shared data flow between Terracotta servers and clients. These
graphs can reflect trends in the flow of shared objects in a Terracotta cluster. Upward trends in flow can
indicate insufficient heap memory, poor locality of reference, or newly changed environmental conditions.
For more information, see Client Flush Rate (Cluster, Server, Client) and Client Fault Rate (Cluster, Server,
Client).

Cache Miss Rate Graph

The Cache Miss Rate measures the number of client requests for an object that cannot be met by a server's
cache and must be faulted in from disk. An upward trend in this graph can expose a bottleneck in your
cluster. For more information, see onheap fault/flush Rate (Cluster, Server).

8.1.9a Real-Time Performance Monitoring

Real-time cluster monitoring allows you to spot issues as they develop in the cluster.

Dashboard

The cluster activity gauges provide real-time readings of critical cluster metrics.

Each gauge has the following characteristics:

Yellow and red zones on the dial indicate
when the metric value has reached warning
or extreme levels.
A digital readout field displays the metric's
current value.
A tooltip shows the metric's full name, last
maximum value, and average value (over
all samples).
By default, values are sampled over
one-second intervals (except for Unacked
Txns). The sample rate can be changed in
the Options dialog box (see Runtime
Statistics).
A "high-water" mark tracks the last high
value, fading after several seconds.
A self-adjusting value range uses a built-in
multiplier to automatically scale with the
cluster.

The left-most gauge (the large dial with the red
needle) measures the rate of write transactions,
which reflects the work being done in the cluster,
based on Terracotta transactions . This gauge may
have a high value or trend higher in a busy
cluster. An indication that the cluster may be
overloaded or out of tune is when this gauge is
constantly at the top of its range.

The remaining gauges, which measure "impeding
factors" in your cluster, typically fluctuate or remain steady at a low value. If any impeding factors
consistently trend higher over time, or remain at a high value, a problem may exist in the cluster. These
gauges are listed below:

Objects Created/s -- The rate of shared objects being created. A rising trend can have a negative
impact on performance by reducing available memory and necessitating more garbage collection.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

130 of 162 2011-06-03 11:26

Lock Recalls/s -- The number of locks being recalled by Terracotta servers. Growing lock recalls result
from a high contention for shared objects, and have a negative performance impact. Higher locality of
reference can usually lower the rate of lock recalls.
Broadcasts/s -- The number of object changes being communicated by the server to affected clients.
High broadcast rates raise network traffic and can have a negative performance impact. Higher
locality of reference can usually lower the need for broadcasts.
Faults/s -- Rate of faulting objects from servers to all connected clients. A high or increasing value can
indicate one or more clients running low on memory or poor locality of reference.
Flushes/s -- Rate of flushing objects from all connected clients to servers. A high or increasing value
can indicate one or more clients running low on memory.
Transaction Size KB/s -- Average size of total transactions.
Unacked Txns -- The current count of unacknowledged client transactions. A high or increasing value
can indicate one more troubled clients.

Runtime Statistics

Runtime statistics provide a continuous feed of sampled real-time data on a number of server and client
metrics. The data is plotted on a graph with configurable polling and historical periods. Sampling begins
automatically when a runtime statistic panel is first viewed, but historical data is not saved.

To adjust the poll and history periods, choose Options from the Tools menu.
In the Options dialog, adjust the values in the polling and history fields. These
values apply to all runtime-statistics views.

To record and save historical data, see Cluster Statistics Recorder.

To view runtime statistics for a cluster, expand the cluster's Monitoring node,
then click the Runtime statistics node.

Use the Select View menu to set the runtime statistics view to one of the
following:

Aggregate View – Choose Aggregate Server Stats to display cluster-wide
statistics.

Per-Client View – Choose a client to display runtime statistics for that client.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

131 of 162 2011-06-03 11:26

Per-Server View – Choose a server to display runtime statistics for that server.

Specific runtime statistics are defined in the following sections. The cluster components for which the
statistic is available are indicated in parentheses.

WARNING: Fatal Errors Due to Statistics Gathering

Fatal errors can occur when collecting resource-specific statistics, such as those related to CPU and disk
usage, due to incompatibilities between the Hyperic SIGAR statistics-collection framework and certain
platforms. See errors related to "Hyperic" in the Technical FAQ for information on how to prevent these
errors.

heap or onHeap Usage (Server, Client)

Shows the amount, in megabytes, of maximum available heap and heap being used.

NOTE: Aggregate View

For all statistics, if "Cluster" is indicated as a cluster component, it indicates the aggregate for all servers in
the clusters.

offheap usage (server)

This statistic appears only if BigMemory is being used (see Improving Server Performance With BigMemory).

Shows the amount, in megabytes or gigabytes, of maximum available off-heap memory and off-heap
memory being used.

Host CPU Usage (Server, Client)

Shows the CPU load as a percentage. If more than one CPU is being used, each CPU's load is shown as a
separate graph line.

Write Transaction Rate (Cluster, Server, Client)

Shows the number of completed Terracotta transactions. Terracotta transactions are sets of one or more
clustered object changes, or writes, that must be applied atomically.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

132 of 162 2011-06-03 11:26

TIP: Terracotta Transactions

Some statistics available through the Terracotta Developer Console are about Terracotta transactions .
Terracotta transactions are not application transactions. One Terracotta transaction is a batch of one or
more writes to shared data.

onheap fault/flush Rate (Cluster, Server)

Faults from disk occur when an object is not available in a server's in-memory (on-heap) cache. Flushes
occur when the on-heap cache must clear data due to memory constraints. The OnHeap Fault/Flush Rate
statistic is a measure of how many objects (per second) are being faulted and flushed from and to the disk in
response to client requests. Objects being requested for the first time, or objects that have been flushed
from the server heap before a request arrives, must be faulted in from disk. High rates could indicate
inadequate memory allocation at the server.

If BigMemory is being used (see Improving Server Performance With BigMemory), faults and flushes are to
off-heap memory.

offheap fault/flush Rate (Cluster, Server)

This statistic appears only if BigMemory is being used (see Improving Server Performance With BigMemory).

Faults from disk occur when an object is not available in a server's in-memory off-heap cache. Flushes occur
when the off-heap cache must clear data due to memory constraints. The OffHeap Fault/Flush Rate statistic
is a measure of how many objects (per second) are being faulted and flushed from and to the disk in
response to client requests. Objects being requested for the first time, or objects that have been flushed
from off-heap memory before a request arrives, must be faulted in from disk. High rates could indicate
inadequate memory allocation at the server.

Unacknowledged Transaction Broadcasts (Client)

Every Terracotta transactions in a Terracotta cluster must be acknowledged by Terracotta clients with
in-memory shared objects that are affected by that transaction. For each client, Terracotta server instances
keep a count of transactions that have not been acknowledged by that client. The Unacknowledged
Transaction Broadcasts statistic is a count of how many transactions the client has yet to acknowledge. An
upward trend in this statistic indicates that a client is not keeping up with transaction acknowledgments,
which can slow the entire cluster. Such a client may need to be disconnected.

Client Flush Rate (Cluster, Server, Client)

The Client Flush Rate statistic is a measure of how many objects are being flushed out of client memory to
the Terracotta server. These objects are available in the Terracotta server if needed at a later point in time.
A high flush rate could indicate inadequate memory allocation at the client.

On a server, the Client Flush Rate is a total including all clients. On a client, the Client Flush Rate is a total of
the objects that client is flushing.

Client Fault Rate (Cluster, Server, Client)

The Client Fault Rate statistic is a measure of how many objects are being faulted into client memory from
the server. A high fault rate could indicate poor locality of reference or inadequate memory allocation at
the client.

On a server, the Client Fault Rate is a total including all clients. On a client, the Client Fault Rate is a total of
the objects that have been faulted to that client.

NOTE: Fault Count

When the Terracotta server faults an object, it also faults metadata for constructing a certain number of
the objects referenced by or related to that object. This improves locality of reference. See the definition
of the fault-count property in the Terracotta Configuration Guide and Reference for more information.

Lock Recalls / Change Broadcasts (Cluster)

Terracotta servers recall a lock from one client as a response to lock requests from other clients. An upward
trend in lock recalls could indicated poor locality of reference.

Change broadcasts tracks the number of object-change notifications that Terracotta servers are sending. See
l2 changes per broadcast, l2 broadcast count, and l2 broadcast per transaction for more information on
broadcasts.

Live Objects (Cluster)

Shows the total number of live objects on disk (red), in the off-heap cache (green), and in the on-heap
cache (blue).

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

133 of 162 2011-06-03 11:26

Iteration
The index number of the DGC
cycle

Sequential integer

Type The type of cycle

Full – Running a full collection
cycle targeting all eligible
objects.

Young – Running a collection
cycle targeting Young Generation
objects.

Status
The collection cycle's current
state

START – Monitoring for object
reference changes and collecting
statistics such as the object begin
count.

MARK – Determining which
objects should be collected and
which should not.

PAUSE – Determining if any
marked objects should not be
collected.

MARK COMPLETED – Stops
checking for reference changes

If the trend for the total number of live objects goes up continuously, clients in the cluster will eventually
run out of memory and applications may fail. Upward trends indicate a problem with application logic,
garbage collection, or a tuning issue on one or more clients. The total number of live objects is given in the
graph's title.

Distributed Garbage Collection

Objects in a DSO root object graph can become unreferenced and no longer exist in the Terracotta client's
heap. These objects are eventually marked as garbage in a Terracotta server instance's heap and from
persistent storage by the Terracotta Distributed Garbage Collector (DGC). The DGC is unrelated to the Java
garbage collector.

TIP: Distributed Garbage Collector

For more information on the DGC, see the Terracotta Concept and Architecture Guide .

To view a history table of DGC activity in the current cluster, expand the cluster's Cluster heap node, then
click the Garbage collection node. The history table is automatically refreshed each time a collection occurs.
Each row in the history table represents one distributed garbage collection cycle, with the following columns:

Column Definition Values

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

134 of 162 2011-06-03 11:26

(finalizing marked object list).

DELETE – Deleting objects.

COMPLETE – Completed cycle.

Start time
The date and time the cycle
began

Date and time stamp (local
server time)

Begin count
The total number of shared
objects held by the server

Integer counter

Paused stage The total time the DGC paused Milliseconds

Mark stage
The total time the DGC took to
mark objects for collection

Milliseconds

Garbage count
The number of shared objects
marked for collection

Integer counter

Delete stage
The total time the DGC took to
collect marked objects

Milliseconds

Total elapsed time
The total time the DGC took to
pause, mark objects, and collect
marked objects

Milliseconds

The DGC graph combines a real-time line graph (with history) displaying the DGC total elapsed time with a
bar graph showing the total number of freed objects.

Triggering a DGC Cycle

The DGC panel displays a message stating the configured frequency of DGC cycles. To manually trigger a DGC
cycle, click Run DGC .

8.1.9b Logs and Status Messages

Click the Logs tab in the Status Panel to display log messages for any of the servers in the cluster. From the
View log for menu, choose the server whose logs you want to view.

The status bar at the bottom of the console window displays messages on the latest changes in the cluster,
such as nodes joining or leaving.

8.1.9c Operator Events

The Operator Events panel, available with enterprise editions of Terracotta, displays cluster events received
by the Terracotta server array. You can use the Operator Events panel to quickly view these events in one
location in an easy-to-read format, without having to search the Terracotta logs.

To view the Operator Events panel, expand the Monitoring node in the cluster list, then click the Operator
Events node.

Events are listed in a table with the following columns:

Event Type – The level of the event (INFO, WARN, DEBUG, ERROR, CRITICAL) along with a color-coded
light corresponding to the severity of the event.
Time of Event – The event’s date and time stamp.
Node – The server receiving the event. Concatenated events are indicated when more than one server
is listed in the Node column.
Event System – The Terracotta subsystem that generated the event. The choices are MEMORY_MANAGER
(virtual memory manager), DGC (distributed garbage collector), LOCK_MANAGER (cluster-wide locks
manager), DCV2 (server-side caching), CLUSTER_TOPOLOGY (server status), and HA (server array).
Message – Message text reporting on a discrete event.

An event appears in bold text until it is manually selected (highlighted). The text of an event that has been
selected is displayed in regular weight.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

135 of 162 2011-06-03 11:26

TIP: Viewing Concatenated Events

The Operator Events panel concatenates events received by more than one server so that they appear in
one row. Concatenated events are indicated when more than one server is listed in the Node column. To
view these concatenated events, float your mouse button over the event to open a tool-tip list.

The Operator Events panel has the following controls:

Mark All Viewed – Click this button to change the text of all listed events from bold to regular weight.
Export – Click this button to export a text file containing all listed events.
Select View – Use this drop-down menu to filter the list of displayed events. You can filter the list of
events based on type (level) or by the generating system (or subsystem). For example, if you choose
INFO from the menu, only events with this event type are displayed in the event list.

8.1.10 Advanced Monitoring and Diagnostics
Tools providing deep views into the clustered data and low-level workings of the Terracotta cluster are
available under the Platform node. These are recommended for developers who are experienced with Java
locks, concurrency, reading thread dumps, and understanding statistics.

8.1.10a Shared Objects

Applications clustered with Terracotta use shared objects to keep data coherent. Monitoring shared objects
serves as an important early-warning and troubleshooting method that allows you to:

Confirm that appropriate object sharing is occurring;
be alerted to potential memory issues;
learn when it becomes necessary to tune garbage collection;
locate the source of object over-proliferation.

The Terracotta Developer Console provides the following tools for monitoring shared objects:

Object Browser
Classes Browser
Runtime Logging of New Shared Objects

These tools are discussed in the following sections.

Object Browser

The Object Browser is a panel displaying shared object graphs in the cluster. To view the Object Browser,
expand the Clustered heap node, then click the Object browser node.

The Object Browser does not refresh automatically. You can refresh it manually in any of the following ways:

Expand or collapse any part of any object graph.
Press the F5 key on your keyboard.
Right-click any item on the object graph that has an object ID (for example, @1001), then select
Refresh from the context menu.

The following are important aspects of the object graph display:

The top-level objects in an object graph correspond to the shared roots declared in the Terracotta
server's configuration file.
Objects referencing other objects can be expanded or collapsed to show or hide the objects they
reference.
Objects in the graph that are a collections type, and reference other objects, indicate the number of
referenced objects they display when expanded.
This number is given as a ratio in the format [X/Y], where X is the number of child elements being
displayed and Y is the total number of child elements in the collection. Collections also have More and
Less items in their context menus for manual control over the number of child elements displayed. By
default, up to ten children (fields) are displayed when you expand a collections-type object in the
object graph.
A delay can occur when the object browser attempts to display very large graphs.
An entry in the graph that duplicates an existing entry has an "up" arrow next to it.
Click the up arrow to go to the existing entry.
An entry in the graph called "Collected" with no data indicates an object that was made known to the
console but no longer exists on the graph. The collected object will eventually disappear from the
graph on refresh.
Each element in the object appears with unique identifying information, as appropriate for its type.
Each object appears with its fully qualified name.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

136 of 162 2011-06-03 11:26

To inspect a portion of an object graph, follow these steps:

1. Find the object ID of the object at the root of the portion you want to inspect.
An object ID has the format @<integer>. For example, @1001 can be an object ID.

2. Enter that object ID in Inspect object .
3. Click Show... .

A window opens containing the desired portion of the graph.

Cluster Object Browsing

To browse the shared-object graphs for the entire cluster, select Cluster Heap from the Select View menu.
All of the shared objects in the cluster-wide heap are graphed, but the browser doesn't indicate which clients
are sharing them.

To see object graphs specific to a client, see Client Object Browsing.

The browser panel displays a running total of the live objects in the cluster. This is the number of objects
currently found in the cluster-wide heap; however, this total does not correspond to the number of objects
you see in the object graph because certain objects, including literals such as strings, are not counted. These
uncounted objects appear in the object graph without an object ID.

Client Object Browsing

To browse the shared-object graphs in a specific client, select the client from the Select View menu. All of
the shared object graphs known to that client are graphed, but the ones not being shared by the client are
grayed out.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

137 of 162 2011-06-03 11:26

The browser panel displays a running total of the live objects in the client. This is the number of objects
currently found in the client heap; however, this total does not correspond to the number of objects you see
in the object graph because the following types of objects are not counted:

Objects not being shared by the client
These unshared objects are grayed out in the object-browser view.
Literals such as strings
These objects appear in the object graph without an object ID.

Classes Browser

Terracotta allows for transparent, clustered object state synchronization. To accomplish this feature, some
of your application classes are adapted into new classes that are cluster-aware. Snapshots of the set of all
such adapted classes known to the server are displayed in the Instance counts panel. The panel has the
following tabs:

Tabular – Lists all the adapted classes in a spreadsheet view, including the class name and a count of
the number of instances of the class that have been created since the server started. Click the column
title to sort along that column's contents.
Hierarchical – Presents an expandable/collapsible Java package view of the adapted classes, along
with a count of the number of instances of the class that have been created since the server started.
Map – Displays an area map distinguishing the most (and least) heavily used adapted classes.
Config snippet – A snippet from the <application> section of the Terracotta configuration file showing
the how the instrumented classes are configured.

To refresh the values in the classes browser, select Refresh from the Instance counts context menu.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

138 of 162 2011-06-03 11:26

Runtime Logging of New Shared Objects

You can log the creation of all new shared objects by following these steps:

1. Select the target client in the cluster list.
2. Click the Logging Settings tab.
3. Enable NewObjectDebug from the Runtime list.

During development or debugging operations, logging new objects can reveal patterns that introduce
inefficiencies or errors into your clustered application. However, during production it is recommended that
this type of intensive logging be disabled.

See the Configuration Guide and Reference for details on the various debug logging options.

8.1.10b Lock Profiler

The Terracotta runtime system can gather statistics about the distributed locks set by the Terracotta
configuration. These statistics provide insight into the workings of a distributed application and aid the
discovery of highly-contented access to shared state. Statistics are displayed in a table (see The Statistics
Table).

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

139 of 162 2011-06-03 11:26

Using the Lock Profiler

To enable or disable lock-statistics gathering, follow these steps:

1. Expand the Diagnostics node, then click the Lock profiler node.
2. Click On to enable statistics gathering.
3. Click Off to disable statistics gathering.
4. Specify the Trace depth (lock code-path trace depth) to set the number of client call-stack frames to

analyze.
See Trace Depth for more information.

5. Click Clients to view lock statistics for Terracotta clients, or click Servers to view lock statistics for
Terracotta servers.
Client-view lock statistics are based on the code paths in the clustered application that result in a lock
being taken out. Server-view lock statistics concern the cluster-wide nature of the distributed locks.
See Lock Element Details for more information.

6. Click Refresh to display the latest statistics.

NOTE: Gathering Statistics Impacts Performance

Gathering and recording statistics can impact a cluster's performance. If statistics are being gathered,
you are alerted in the cluster list by a flashing icon next to the affected cluster.

Lock Names

Each lock has a corresponding identifier, the lock-id. For a named lock the lock-id is the lock name. For an
autolock the lock-id is the server-generated id of the object on which that lock was taken out. An example of
an autolock id is @1001. That autolock id corresponds to the shared object upon which distributed
synchronization was carried out. You can use the object browser (see Object Browser) to view the state of
shared object @1001.

Searching for Specific Locks

You can search for specific locks listed in the Lock column. Enter a string in Find , then click Next or Previous

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

140 of 162 2011-06-03 11:26

Times Requested
Number of times this lock was requested by clients
in the cluster.

Times Hopped
Times an acquired greedy lock was retracted from
a holding client and granted to another client.

Average Contenders
Average number of threads wishing to acquire the
lock at the time it was requested.

Average Acquire Time
Average time (in milliseconds) between lock
request and grant.

Average Held Time
Average time (in milliseconds) grantee held this
lock.

Average Nested
Average number of outstanding locks held by
acquiring thread at grant time.

to move through matching entries.

Trace Depth

A single lock-expression in the configuration can result in the creation of multiple locks by the use of wildcard
patterns. A single lock can be arrived at through any number of different code paths. For example, there
could be 3 different call sequences that result in a particular lock being granted, with one of the paths rarely
entered and another responsible for the majority of those lock grants. By setting the trace depth
appropriately you can gain insight into the behavior of your application and how it can affect the
performance of your clustered system.

The trace depth control sets the number of client call-stack frames that are analyzed per lock event to
record lock statistics. A depth of 0 gathers lock statistics without regard to how the lock event was arrived at.
A lock depth of 1 means that one call-stack frame will be used to disambiguate different code paths when
the lock event occurred. A lock depth of 2 will use two frames, and so on.

TIP: Generating Line Numbers in Lock Traces

Trace stack frames can include Java source line numbers if the code is compiled with debugging enabled.
This can be done by passing the -g flag to the javac command, or in Ant by defining the javac task with
the debug="true" attribute.

With a trace-depth setting of 1 all locks are recorded together, regardless of the call path. This is because
the stack depth analyzed will always be just the method that resulted in the lock event (in other words the
surrounding method). For example, a lock event that occurs within method Foo() records all lock events
occurring within Foo() as one single statistic.

With a lock depth of 2, different call paths can be separated because both the surrounding method and the
calling method are used to record different lock statistics. For example, the callers of Foo(), Bar1() and
Bar2(), are also considered. A call path of Bar1() -> Foo() is recorded separately from Bar2() -> Foo().

The Statistics Table
Lock Statistic Description

TIP: Greedy Locks

Terracotta employs the concept of greedy locks to improve performance by limiting unnecessary lock hops.
Once a client has been awarded a lock, it is allowed to keep that lock until another client requests it. The
assumption is that once a client obtains a lock it is likely to request that same lock again. For example, in a
cluster with a single node repeatedly manipulating a single shared object, server lock requests should be 1
until another client enters the cluster and begins manipulating that same object. Server statistics showing
"na" (undefined) are likely due to greedy locks.

Lock Element Details

The bottom portion of the client's view displays details on the selected lock element. The currently selected
lock trace is shown on the left and the configuration element responsible for the creation of the selected
lock is shown on the right.

8.1.11 Recording and Viewing Statistics

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

141 of 162 2011-06-03 11:26

8.1.11a Cluster Statistics Recorder

The Cluster Statistics Recorder panel can generate recordings of selected cluster-wide statistics. This panel
has controls to start, stop, view, and export recording sessions. You can use the Snapshot Visualization Tool
to view the recorded information.

For definitions of available statistics, see Definitions of Cluster Statistics. To learn about configuring the
Terracotta Cluster Statistics Recorder, using its command-line interface, and more, see the Platform
Statistics Recorder Guide .

WARNING: Potentially Severe Performance Impact

Gathering and recording statistics can significantly impact a cluster's performance. If statistics are being
gathered, you are alerted in the cluster list by a flashing icon next to the affected cluster. In a production
environment or if testing performance, the impact of recording statistics should be well understood.

8.1.11b Snapshot Visualization Tool

The Snapshot Visualization Tool (SVT) provides a graphical view of cluster information and statistics. The
view is created using data recorded with the Statistics Recorder.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

142 of 162 2011-06-03 11:26

The SVT is provided as a TIM, called tim-svt, which you can install using tim-get . Once the SVT is installed,
start (or restart) the Terracotta Developer Console and confirm that the View button on the Cluster Statistics
Recorder is enabled. No changes to the Terracotta configuration file are necessary when you install the SVT.

TIP: Terracotta in Eclipse

In Eclipse with the Terracotta Eclipse plug-in, use the Terracotta|Update modules... menu to install SVT.

SVT controls are defined below.

Import...

Load a saved cluster statistics recording that was saved to file. Clicking Import... opens a standard
file-selection window for locating the file.

Retrieve...

Find recorded sessions on active Terracotta servers. Clicking Retrieve... opens a dialog to enter the server
address in the format <server_ip_address:JMX_port> or <server_name:JMX_port> as defined in tc-config.xml
. Once connected to the server, available recorded sessions appear in the SVT Sessions menu.

Sessions

Select a recorded session from the Sessions drop-down menu to load it. Sessions lists the recorded sessions
last retrieved from a Terracotta server.

Graph heights

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

143 of 162 2011-06-03 11:26

Scale the y-axis on the graphs displayed in the SVT. Moving the slider to the left shrinks the graph height,
while moving it to the right grows the graph height.

Server, Client, and Statistics checkboxes

Choose which servers and clients have their recorded statistics displayed in the graphs. For each server and
client, choose which statistics are displayed in the graphs.

Generate graphs

Click Generate graphs to create the graphs from the selected statistics.

8.1.12 Troubleshooting the Console
This section provides solutions for common issues that can affect both the Terracotta Developer Console and
Operations Center.

8.1.12a Cannot Connect to Cluster (Console Times Out)

If you've verified that your Terracotta cluster is up and running, but your attempt to monitor it remotely
using a Terracotta console is unsuccessful, a firewall may be the cause. Firewalls that block traffic from
Terracotta servers' JMX ports prevent monitoring tools from seeing those servers. To avoid this and other
connection issues that may also be attributable to firewalls, ensure that the JMX and DSO ports configured in
Terracotta are unblocked on your network.

If it is certain that no firewall is blocking the connection, network latencies may be causing the console to
time out before it can connect to the cluster. In this case, you may need to adjust the console timeout
setting using the following property:

-Dcom.tc.admin.connect-timeout=100000

where the timeout value is given in milliseconds.

8.1.12b Failure to Display Certain Metrics Hyperic (Sigar) Exception

The Terracotta Developer Console (or Terracotta Operations Center) may fail to display (or graph) certain
metrics, while at the same time a certain "Hyperic" (or "Sigar") exception is reported in the logs or in the
console itself.

These two problems are related to starting Java from a location different than the value of JAVA_HOME. To
avoid the Hyperic error and restore metrics to the Terracotta consoles, invoke Java from the location
specified by JAVA_HOME.

NOTE: Segfaults and Hyperic (Sigar) Libraries

If Terracotta clients or servers are failing with exceptions related to Hyperic (Sigar) resource monitoring,
see this Technical FAQ item .

8.1.12c Console Runs Very Slowly

If you are using the Terracotta Developer Console to monitor a remote cluster, especially in an X11
environment, issues with Java GUI rendering may arise that slow the display. You may be able to improve
performance simply by changing the rendering setup.

If you are using Java 1.7, set the property sun.java2d.xrender to "true" to enable the latest rendering
technology:

-Dsun.java2d.xrender=true

For Java 1.5 and 1.6, be sure to set property sun.java2d.pmoffscreen to "false" to allow Swing
buffers to reside in memory:

-Dsun.java2d.pmoffscreen=false

For information about this Java system property, see http://download.oracle.com/javase/1.5.0
/docs/guide/2d/flags.html#pmoffscreen.

You can add these properties to the Developer Console start-up script (dev-console.sh or
dev-console.bat).

8.1.12d Console Logs and Configuration File

The Terracotta Developer Console stores a log file (devconsole.log.<number>) and a cofiguration
file (.AdminClient.xml) in the home directory of the user who ran the console. The log file contains a
record of errors encountered by the console.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

144 of 162 2011-06-03 11:26

8.1.13 Backing Up Shared Data
The Terracotta Operations Center provides console-based backup configuration. Enterprise versions of
Terracotta also include a backup script (Database Backup Utility (backup-data)).

8.1.14 Update Checker
On a bi-weekly basis the Terracotta Developer Console will check, when first started, on updates to the
Terracotta platform. By default, a notice informing you that an update check is about to be performed is
displayed, allowing to ignore the immediate check, acknowledge and allow the check, or to disable further
checking.

Should the update check be allowed, the Terracotta Developer Console will query the OpenTerracotta
website (www.terracotta.org) and report on any new updates. Should the update checker feature be
disabled, it can always be re-enabled via the Help > Update Checker... menu.

8.1.15 Definitions of Cluster Statistics
The following categories of cluster information and statistics are available for viewing and recording in the
Cluster Statistics Recorder.

TIP: Terracotta Cluster Nomenclature

l1 = Terracotta client

l2 = Terracotta server instance

8.1.15a cache objects evict request

The total number of objects marked for eviction from the l1, or from the l2 to disk. Evicted objects are still
referenced, and can be faulted back to the l1 from the l2 or from disk to l2. The SVT graphs this metric for
each l1 and l2 separately. High counts imply that free memory could be low.

8.1.15b cache objects evicted

The number of objects actually evicted. If this metric is not close in value to cache objects evict request_,
then memory may not be getting freed quickly enough.

8.1.15c l1 l2 flush

The object flush rate when the l1 flushes objects to the l2 to free up memory or as a result of GC activity.

8.1.15d l2 faults from disk

The number of times the l2 has to load objects from disk to serve l1 object demand. A high faulting rate
could indicate an overburdened l2.

8.1.15e l2 l1 fault

The number of times an l2 has to send objects to an l1 because the objects do not exist in the l1 local heap
due to memory constraints. Better scalability is achieved when this number is lowered through improved
locality and usage of an optimal number of JVMs.

8.1.15f memory (usage)

The amount of memory (heap) usage over time.

8.1.15g vm garbage collector

The standard Java garbage collector's behavior, tracked on all JVMs in the cluster.

8.1.15h distributed gc (distributed garbage collection, or DGC)

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

145 of 162 2011-06-03 11:26

The behavior of the Terracotta tool that collects distributed garbage on an l2. The DGC can pause all other
work on the l2 to ensure that no referenced objects are flagged for garbage collection.

8.1.15i l2 pending transactions

The number of Terracotta transactions held in memory by a Terracotta server instance for the purpose of
minimizing disk writes. Before writing the pending transactions, the Terracotta server instance optimizes
them by folding in redundant changes, thus reducing its disk access time. Any object that is part of a pending
transaction cannot be changed until the transaction is complete.

8.1.15j stage queue depth

The depth to which visibility into Terracotta server-instance work-queues is available. A larger depth value
allows more detail to emerge on pending task-completion processes, bottlenecks due to application requests
or behavior, types of work being done, and load conditions. Rising counts (of items in these processing
queues) indicate backlogs and could indicate performance degradation.

8.1.15k server transaction sequencer stats

Statistics on the Terracotta server-instance transaction sequencer, which sequences transactions as resources
become available while maintaining transaction order.

8.1.15l network activity

The amount of data transmitted and received by a Terracotta server instance in bytes per second.

8.1.15m l2 changes per broadcast

The number of updates to objects on disk per broadcast message (see l2 broadcast count).

8.1.15n message monitor

The network message count flowing over TCP from Terracotta clients to the Terracotta server.

8.1.15o l2 broadcast count

The number of times that a Terracotta server instance has transmitted changes to objects. This "broadcast"
occurs any time the changed object is resident in more than one Terracotta client JVM. This is not a true
broadcast since messages are sent only to clients where the changed objects are resident.

8.1.15p l2 transaction count

The number of Terracotta transactions being processed (per second) by a Terracotta server instance.

8.1.15q l2 broadcast per transaction

The ratio of broadcasts to Terracotta transactions . A high ratio (close to 1) means that each broadcast is
reporting few transactions, and implies a high co-residency of objects and inefficient distribution of
application data. A low ratio (close to 0) reflects high locality of reference and better options for linear
scalability.

8.1.15r system properties

Snapshot of all Java properties passed in and set at startup for each JVM. Used to determine configuration
states at the time of data capture, and for comparison of configuration across JVMs.

8.1.15s thread dump

Displays a marker on all statistics graphs in the SVT at the point when a thread dump was taken using the
Cluster statistics recorder_. Clicking the marker displays the thread dump.

8.1.15t disk activity

The number of operations (reads and writes) per second, and the number of bytes per second (throughput).
The number of reads corresponds to l2 faulting objects from disk, while writes corresponds to l2 flushing
objects to disk. The SVT graphs the two aspects separately.

8.1.15u cpu (usage)

The percent of CPU resources being used. Dual-core processors are broken out into CPU0 and CPU1.

8.2 Terracotta Tools Catalog
A number of useful tools are available to help you get the most out of installing, testing, and maintaining

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

146 of 162 2011-06-03 11:26

Terracotta. Many of these tools are included with the Terracotta kit, in the bin directory (unless otherwise
noted). Some tools are found only in an enterprise version of Terracotta. To learn more about the many
benefits of an enterprise version of Terracotta, see Enterprise Products .

If a tool has a script associated with it, the name of the script appears in parentheses in the title for that
tool section. The script file extension is .sh for UNIX/Linux and .bat for Microsoft Windows.

Detailed guides exist for some of the tools. Check the entry for a specific tool to see if more documentation
is available.

8.2.1 Terracotta Maven Plugin
The Terracotta Maven Plugin allows you to use Maven to install, integrate, update, run, and test your
application with Terracotta.

The Terracotta Maven Plugin, along with more documentation, is available from the Terracotta Forge .

8.2.2 TIM Management (tim-get)
The tim-get script provides a simple way to update the JARs in the Terracotta kit as well as manage the
catalog of available Terracotta integration modules (TIMs) and other JARs.

TIP: tim-get Documentation

See the tim-get guide for detailed usage information

8.2.3 Sessions Configurator (sessions-configurator)
The Terracotta Sessions Configurator is a graphical tool that assists you in clustering your web application’s
session data.

See the Terracotta Sessions Configurator Guide for for detailed installation and feature information. See
Clustering a Spring Web Application for a tutorial on clustering a Spring web application using the Terracotta
Sessions Configurator.

8.2.4 Developer Console (dev-console)
The Terracotta Developer Console is a graphical tool for monitoring various aspects of your Terracotta cluster
for testing and development purposes. The console can record a number of statistics that can be viewed over
time using the Snapshot Visualization Tool (SVT).

See the Terracotta Developer Console for detailed information on the features of the console and SVT.

8.2.5 Operations Center (ops-center)

TIP: Enterprise Feature

Available in Terracotta enterprise editions.

The Terracotta Operations Center is a console for monitoring and managing various aspects of your
Terracotta cluster in production.

See the Terracotta Operations Center for detailed information on the features and use of this graphical tool.

8.2.6 Archive Utility (archive-tool)
archive-tool is used to gather filesystem artifacts generated by a Terracotta Server or DSO client
application for the purpose of contacting Terracotta with a support query.

Microsoft Windows
[PROMPT] %TERRACOTTA_HOME%\bin\archive-tool.bat <args>

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/archive-tool.sh <args>

where <args> are:

[-n] (No Data - excludes data files)
[-c] (Client - include files from the dso client)
<path to terracotta config xml file (tc-config.xml)> | <path to data and/or logs directory>
[<output filename in .zip format>]

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

147 of 162 2011-06-03 11:26

8.2.7 Database Backup Utility (backup-data)

TIP: Enterprise Feature

Available in Terracotta enterprise editions.

The Terracotta backup utility creates a backup of the data being shared by your application. Backups are
saved to the default directory data-backup . Terracotta automatically creates data-backup in the
directory containing the Terracotta server's configuration file (tc-config.xml by default).

However, you can override this default behavior by specifying a different backup directory in the server's
configuration file using the < data-backup > property:

<servers>
 <server host="%i" name="myServer">
 <data-backup>/Users/myBackups</data-backup>
 <statistics>terracotta/-server/server-statistics</statistics>
 <dso>
 <persistence>
 <mode>permanent-store</mode>
 </persistence>
 </dso>
 </server>
</servers>

8.2.7a Using the Terracotta Operations Center

NOTE:

In the example above, persistence mode is configured for permanent-store, which is required to enable
backups.

Backups can be performed from the Terracotta Operations Center (ops-center) using the Backup feature.

Microsoft Windows
[PROMPT] %TERRACOTTA_HOME%\bin\backup-data.bat <hostname> <jmx port>

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/backup-data.sh <hostname> <jmx port>

8.2.7b Example (UNIX/Linux)
${TERRACOTTA_HOME}/bin/backup-data.sh localhost 9520

To restore a backup, see the section Restoring a Backup in Terracotta Operations Center .

8.2.8 Distributed Garbage Collector (run-dgc)
run-dgc is a utility that causes the specified Terracotta Server to perform distributed garbage collection
(DGC). Use run-dgc to force a DGC cycle in addition to or instead of automated DGC cycles. Forced DGC cycles
can also be initiated from the Terracotta Developer Console and the Terracotta Operations Center.

NOTE: Running Concurrent DGC Cycles

Two DGC cycles cannot run at the same time. Attempting to run a DGC cycle on a server while another DGC
cycle is in progress generates an error.

Microsoft Windows
[PROMPT] %TERRACOTTA_HOME%\bin\run-dgc.bat <hostname> <jmx-port>

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/run-dgc.sh <hostname> <jmx-port>

8.2.8a Further Reading

For more information on distributed garbage collection, see the Concept and Architecture Guide and the
Tuning Guide .

For information on monitoring the Terracotta Server's garbage collection, see 8.1 Terracotta Developer
Console.

8.2.9 Start and Stop Server Scripts (start-tc-server, stop-tc-server)
Use the start-tc-server script to run the Terracotta Server, optionally specifying a configuration file:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

148 of 162 2011-06-03 11:26

Microsoft Windows
[PROMPT] %TERRACOTTA_HOME%\bin\start-tc-server.bat [-f <config specification>]

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh [-f <config specification>]

<config specification> can be one of:

path to configuration file
URL to configuration file
<server host>:<dso-port> of another running Terracotta Server

If no configuration is specified, a file named tc-config.xml in the current working directory will be
used. If no configuration is specified and no file named tc-config.xml is found in the current working
directory, a default configuration will be used. The default configuration includes no DSO application
element and is therefor useful only in development mode, where each DSO client provides it's own
configuration.

For production purposes, DSO clients should obtain their configuration from a Terracotta Server using the
tc.config system property.

Use the stop-tc-server script to cause the Terracotta Server to gracefully terminate:

Microsoft Windows
[PROMPT] %TERRACOTTA_HOME%\bin\stop-tc-server.bat [<server-host> <jmx-port>]

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/stop-tc-server.sh [<server-host> <jmx-port>]

stop-tc-server uses JMX to ask the server to terminate. If you have secured your server, requiring
authenticated access, you will be prompted for a password.

8.2.9a Further Reading

For more information on securing your server for JMX access see the section /tc:tc-config/servers/server
/authentication in Configuration Guide and Reference .

8.2.10 Version Utility (version)
Terracotta Version Tool is a utility script that outputs information about the Terracotta installation, including
the version, date, and version-control change number from which the installation was created. When
contacting Terracotta with a support query, please include the output from Version Tool to expedite the
resolution of your issue.

Microsoft Windows
[PROMPT] %TERRACOTTA_HOME%\bin\version.bat

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/version.sh&

8.2.11 Server Status (server-stat)
The Server Status tool is a command-line utility for checking the current status of one or more Terracotta
servers instances.

Server Status returns the following data on each server it queries:

Health – OK (server responding normally) or FAILED (connection failed or server not responding
correctly).
Role – The server's position in an active-passive group. Single servers always show ACTIVE. "Hot
standbys" are shown as PASSIVE.
State – The work state that the server is in.
JMX port – The TCP port the server is using to listen for JMX events.
Error – If the Server Status tool fails, the type of error.
Microsoft Windows

[PROMPT] %TERRACOTTA_HOME%\bin\server-stat.bat <args>

where <args> are:

[-s] host1,host2,... – Check one or more servers using the given hostnames or IP addresses using the
default JMX port (9520).
[-s] host1:9520,host2:9521,... – Check one or more servers using the given hostnames or IP addresses

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

149 of 162 2011-06-03 11:26

with JMX port specified.
[-f] <path>/tc-config.xml – Check the servers defined in the current Terracotta configuration file.
[-h] – Display help on Server Status.

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/platform/bin/server-stat.sh <args>

<args> are the same as shown for Microsoft Windows.

8.2.11a Example

The following example shows usage of and output from the Server Status tool.

[PROMPT] server-stat.sh -s 0.0.0.0:9520
0.0.0.0.health: OK
0.0.0.0.role: ACTIVE
0.0.0.0.state: ACTIVE-COORDINATOR
0.0.0.0.jmxport: 9520

If no server is specified, by default the Server Status checks the status of localhost at JMX port 9520.

8.2.12 Cluster Statistics Recorder (tc-stats)
The Terracotta Cluster Statistics Recorder allows you to configure and manage the recording of statistics for
your entire cluster. The Cluster Statistics Recorder has a command-line interface (CLI) useful for scripting
statistics-gathering operations. For more information, see the section Command-Line Interface in the
Platform Statistics Recorder Guide .

8.2.13 DSO Tools

NOTE:

The following subject matter covers aspects of core Terracotta DSO technology. DSO is recommended for
advanced users only .

8.2.13a Sample Launcher (samples)

Terracotta Sample Launcher is a graphical tool that provides an easy way to run the Terracotta for POJO
samples in a point-and-click manner. When run, Sample Launcher automatically starts up the demo
Terracotta Server, which it also shuts down upon termination. A selection of samples demonstrating POJO
clustering are listed and can be launched. Descriptions of each sample, including information about how to
run the sample from the command-line, as well as sample code and configuration can be browsed.

Run Sample Launcher from the command line.

Microsoft Windows
[PROMPT] %TERRACOTTA_HOME%\platform\tools\pojo\samples.bat

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/platform/tools/pojo/samples.sh&

8.2.13b Make Boot Jar Utility (make-boot-jar)

The make-boot-jar script generates a boot jar file based on the contents of the Terracotta configuration
file, determined in the following order:

The configuration file specified by -f . For example:

[PROMPT] ./make-boot-jar.sh -f ../tc-config.xml

The configuration file found in the current directory.
The default Terracotta configuration file.

If the boot jar exists, make-boot-jar re-creates the boot jar only if it needs to be re-created. It can be
forced to create one by passing the -w option. It returns with exit code 1 if the boot jar file is incomplete,
otherwise the exit code is 0.

8.2.13c Scan Boot Jar Utility (scan-boot-jar)

The scan-boot-jar script verifies the contents of the boot jar file against an L1 configuration. It will list
all of the classes declared in the <additional-boot-jar-classes/> section that is not included in
the boot jar, as well as classes in the boot jar that is not listed in the <additional-boot-jar-
classes/> section. It returns with exit code 1 if the boot jar file is incomplete, otherwise the exit code is

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

150 of 162 2011-06-03 11:26

0.

8.2.13d Boot Jar Path Utility (boot-jar-path)

boot-jar-path is a helper utility used by the dso-env script for determining the full path to the
JVM-specific DSO bootjar. This script is not meant to be used directly.

8.2.13e DSO Environment Setter (dso-env)

The dso-env script helps you set up your environment to run a DSO client application, using existing
environment variables and setting TC_JAVA_OPTS to a value you can pass to java. It expects JAVA_HOME
, TC_INSTALL_DIR , and TC_CONFIG_PATH to be set prior to invocation. dso-env is meant to be
executed by your custom startup scripts, and is also used by each Terracotta demo script.

Microsoft Windows
set TC_INSTALL_DIR=%TERRACOTTA_HOME%
set TC_CONFIG_PATH=<config specification>
call "%TC_INSTALL_DIR%\bin\dso-env.bat" -q
set JAVA_OPTS=%TC_JAVA_OPTS% %JAVA_OPTS%
call "%JAVA_HOME%\bin\java" %JAVA_OPTS% ...

UNIX/Linux
TC_INSTALL_DIR=${TERRACOTTA_HOME}
TC_CONFIG_PATH=<config specification>
. ${TC_INSTALL_DIR}/platform/bin/dso-env.sh -q
JAVA_OPTS="${TC_JAVA_OPTS} ${JAVA_OPTS}"
${JAVA_HOME}/bin/java ${JAVA_OPTS} ...

<config specification> above is either the path to a local config file or a <server>:
<dso-port> tuple specifying the configuration of a running Terracotta Server. If the config specification is
not set, an existing file in the current working directory named tc-config.xml will be used. If no config
is specified and no local tc-config.xml is found, the Terracotta runtime will fail to start.

8.2.13f Java Wrapper (dso-java)

dso-java is a script that can be used to run a DSO client application in a manner similar to running a standard
java application. For instance, one way to run the jtable POJO sample is to first run the demo server:

[PROMPT] ${TERRACOTTA_HOME}/samples/start-demo-server.sh&

... and to change into the jtable directory and invoke dso-java in the following way:

[PROMPT] cd ${TERRACOTTA_HOME}/samples/pojo/jtable
[PROMPT] ${TERRACOTTA_HOME}/platform/bin/dso-java -cp classes demo.jtable.Main

dso-java uses the DSO Environment Setter (dso-env) helper script to specify the Java runtime options needed
to activate the Terracotta runtime. The configuration file, tc-config.xml, is located in the current working
directory. If the configuration file was in a different location, specify that location using the tc.config Java
system property:

-Dtc.config=<config specification>

<config specification> is a comma-separated list of:

path to configuration file
URL to configuration file
<server host>:<dso-port> of running Terracotta Server

When a <config specification> is comprised of a list of configuration sources, the first configuration
successfully obtained is used.

9 Terracotta DSO Installation

Terracotta Distributed Shared Objects (DSO) clusters require a special installation. DSO uses object identity,
instrumented classes (byte-code instrumentation), object-graph roots, and cluster-wide locks to maintain
data coherence.

Terracotta DSO clusters differ from standard (non-DSO) clusters in certain important ways. With DSO:

Objects are not serialized.
If your shared classes must be serialized, do not use DSO.
All shared classes must meet portability requirements.
Non-portable classes cannot be shared and must be excluded using configuration.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

151 of 162 2011-06-03 11:26

Clustered applications require a boot JAR to pre-instrument certain classes.
The boot JAR file is platform-specific.
Special integration files, called Terracotta Integration Modules (TIMs), are required to integrate with
other technologies.
Cluster-wide locking requirements are stricter and more extensive.
A limited number of platforms are supported.

The threshold for successfully setting up a DSO cluster can be substantially higher than for a non-DSO cluster
due to DSO’s stricter code and configuration requirements. It is recommended that if possible you use the
standard installation (also called express installation) to set up a non-DSO cluster. Use the DSO installation
only if your deployment requires the features of DSO.

WARNING: Do Not Combine Installation Methods

You cannot combine the standard ("express" or non-DSO) and the DSO ("custom") installations. These two
installation methods are incompatible and if combined cause errors at startup.

If you began with a standard install, then you cannot continue with the DSO install. If you began with the
DSO install, then you cannot continue with the standard install. You must start with a fresh installation if
switching between installation methods.

If you are new to Terracotta, see this introduction to the Terracotta platform before proceeding with the
DSO installation. For more information on comparing standard and DSO installation methods, see Standard
Versus DSO Installations.

9.0.1 Standard Versus DSO Installations
There are two ways to install the Terracotta products: The standard installation, also called express , and
the DSO installation, also called custom . Clusters based on the standard installation are much simpler and
more flexible than those based on the DSO installation. The custom installation is for users who require DSO
features such as Terracotta roots, preservation of object identity, or integration of other technologies using
Terracotta Integration Modules (TIMs).

If you are using Ehcache on a single JVM, for example, or used cache replication for clustering, consider the
standard installation (see Enterprise Ehcache Installation). If you are a current Terracotta user who requires
DSO and distributed caching, it is recommended that you verify the need for DSO before continuing with the
DSO installation given in this document.

If you are unsure about which installation path to choose, read both installation documents to find the one
that meets your requirements. These installation paths are not compatible and cannot be used in
combination .

9.0.2 Overview of Installation
This installation procedure is for users intending to install Enterprise Ehcache, Quartz Scheduler, or
Terracotta Web Sessions. Instructions on integrating an application server (container) are also included.
These products are independent of each other, but can be installed and run with clients using the same
Terracotta Server Array.

The installation process involves these major tasks:

1. Have the JARs for the products you intend to install.
2. Edit the Terracotta configuration and the configuration (or script) files for products and containers.
3. Use tim-get to install the TIMs listed in the Terracotta configuration file.

Details on completing these tasks are provided in 9.1 Performing a DSO Installation.

9.1 Performing a DSO Installation
This document shows you how to perform a custom installation for clustering the following Terracotta
products:

Enterprise Ehcache
Includes Enterprise Ehcache for Hibernate (second-level cache for Hibernate)
Quartz Scheduler
Web Sessions

9.1.1 Prerequisites

JDK 1.5 or higher.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

152 of 162 2011-06-03 11:26

See the Certified Platforms page for certified JVMs.
Terracotta 3.5.0 or higher
Download the kit and run the installer on the machine that will host the Terracotta server, and on
each application server (also called a Terracotta client). The kit contains compatible versions of
Ehcache and Quartz.
If you are using an application server, choose a certified server (see the Certified Platforms page) .

For guaranteed compatibility, use the JAR files included with the Terracotta kit you are installing. Mixing
with older components may cause errors or unexpected behavior. If you are using an Enterprise Edition kit,
some JAR files will have "-ee-" as part of their name.

9.1.1a Enterprise Ehcache Users

Ehcache must be installed both for Enterprise Ehcache and Enterprise Ehcache for Hibernate (second-level
cache for Hibernate). If you do not have Ehcache installed, a compatible version of Ehcache is available in
the Terracotta kit. To install Ehcache, add the following JAR files to your application’s classpath (or
WEB-INF/lib directory if using a WAR file):

${TERRACOTTA_HOME}/ehcache/lib/ehcache-core-<ehcache-version>.jar

The Ehcache core libraries, where <ehcache-version> is the version of Ehcache (2.4.1 or higher).

${TERRACOTTA_HOME}/ehcache/lib/slf4j-api-<slf4j-version>.jar
The SLF4J logging facade allows Ehcache to bind to any supported logger used by your application.
Binding JARs for popular logging options are available from the SLF4J project . For convenience, the
binding JAR for java.util.logging is provided in ${TERRACOTTA_HOME}/ehcache (see
below).
${TERRACOTTA_HOME}/ehcache/lib/slf4j-jdk14-<slf4j-version>.jar
An SLF4J binding JAR for use with the standard java.util.logging , also known as JDK 1.4
logging.
You will also need to install Terracotta Integration Modules (TIMs) to allow Ehcache to run clustered.
The required TIMs are described later in this procedure.
Hibernate 3.2.5, 3.2.6, 3.2.7, 3.3.1, or 3.3.2 (Enterprise Ehcache for Hibernate only)
If you are clustering Enterprise Ehcache for Hibernate (second-level cache), be sure to use a
compatible version of Hibernate in your application. Because sharing of Hibernate regions between
different versions of Hibernate is not supported, be sure to use the same version of Hibernate
throughout the cluster.

9.1.1b Quartz Scheduler Users

If you do not have Quartz installed, a compatible version of Quartz is available in the Terracotta kit. To
install Quartz, add the following JAR file to your application’s classpath (or WEB-INF/lib directory if using
a WAR file):

${TERRACOTTA_HOME}/quartz/quartz-<quartz-version>.jar
The Quartz core libraries, where <quartz-version> is the version of quartz.
You will also need to install Terracotta Integration Modules (TIMs) to allow Ehcache to run clustered.
The required TIMs are described later in this procedure.

9.1.2 Step 1: Configure the Terracotta Platform
The Terracotta platform is the basis of the Terracotta cluster. You must configure the Terracotta servers and
clients that form the cluster using the Terracotta configuration file (tc-config.xml by default). Start
with a basic tc-config.xml :

<?xml version="1.0" encoding="UTF-8"?>
<!-- All content copyright Terracotta, Inc., unless otherwise indicated. All rights reserved. -->
<!-- This Terracotta configuration file is intended for use with Terracotta for Hibernate. -->
<tc:tc-config xsi:schemaLocation="http://www.terracotta.org/schema/terracotta-5.xsd"
xmlns:tc="http://www.terracotta.org/config"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <servers>
 <!-- Shows where the Terracotta server can be found. -->
 <server host="localhost">
 <data>%(user.home)/terracotta/server-data</data>
 <logs>%(user.home)/terracotta/server-logs</logs>
 </server>
 </servers>
 <!-- Shows where to put the generated client logs -->

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

153 of 162 2011-06-03 11:26

GlassFish v1 tim-glassfish-v1

GlassFish v2 tim-glassfish-v2

JBoss Application Server 4.0 tim-jboss-4.0

JBoss Application Server 4.2 tim-jboss-4.2

JBoss Application Server 5.1 tim-jboss-5.1

Jetty 6.1 tim-jetty-6.1

Tomcat 5.0 tim-tomcat-5.0

Tomcat 5.5 tim-tomcat-5.5

 <clients>
 <logs>%(user.home)/terracotta/client-logs</logs>

 <!-- Names the Terracotta Integration Modules (TIM) needed for clustering specific technologies. -->
 <modules>
 <!-- Add TIMs here using <module name="tim-foo-<foo version>" /> elements. -->
 </modules>
 </clients>
</tc:tc-config>

Save this file to ${TERRACOTTA_HOME}/tc-config.xml on the host with the Terracotta server.

NOTE: Locating and Naming tc-config.xml

This procedure assumes you name the Terracotta configuration file tc-config.xml and save it to
${TERRACOTTA_HOME}. If you give the file a different name and locate it elsewhere, you must adjust the
name and paths shown in this procedure accordingly.

9.1.2a TIMs for Clustering Enterprise Ehcache

To cluster Enterprise Ehcache or Enterprise Ehcache for Hibernate, add the following element to the
<modules> subsection of the <clients> section:

<module name="tim-ehcache-2.0" />

The module shown is for Ehcache 2.0. Note that the version shown at the end of the module name must
match the version of Ehcache being used. For example, to integrate with Ehcache 1.7.2, add:

<module name="tim-ehcache-1.7" />

You must use Ehcache version 1.7.2 or higher. The Terracotta kit contains a compatible version of Ehcache
and it is recommended that you use that version by adding the provided Ehcache JAR files to your
application’s classpath.

9.1.2b TIMs for Clustering Quartz Scheduler

To cluster Quartz Scheduler, add the following element to the <modules> subsection of the <clients> section:

<module name="tim-quartz-1.7" />

The module shown is for Quartz 1.7.x. Note that the version shown at the end of the module name must
match the version of Quartz being used. You must use Quartz version 1.5.1 or higher. The Terracotta kit
contains a compatible version of Quartz and it is recommended that you use that version by adding the
provided Quartz JAR file to your application’s classpath.

9.1.2c TIMs for Integrating an Application Server

To integrate an application server, add the following element to the <modules> subsection of the <clients>
section:

<module name="tim-<app-server>-<app-server-version>" />

For example, to use Tomcat 6.0, add:

<module name="tim-tomcat-6.0"/>

See the following table for a full list of certified application-server TIMs.

Container Terracotta Integration Module Name

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

154 of 162 2011-06-03 11:26

Tomcat 6.0 tim-tomcat-6.0

WebLogic 9 tim-weblogic-9

WebLogic 10 tim-weblogic-10

JBoss Application Server run.conf
run.conf is called by both
run.sh and run.bat .

Jetty jetty.sh

Jetty can be configured in a
number of different ways. See
the comments in the jetty.sh
startup script for more
information on how to set the
Jetty environment.

Tomcat setenv.sh or setenv.bat

The setenv script is called by
catalina.sh or
catalina.bat if it is exists in
the same directory.

WebLogic setEnv.sh or setEnv.bat

The setEnv script is called by
startWeblogic.sh or
startWeblogic.bat . See
the startWeblogic script to find
or edit the location of the setEnv
script.

To integrate your chosen application server, see the following sections.

Tomcat, JBoss Application Server, Jetty, WebLogic

Integrate Terracotta by adding the following to the top of the appropriate startup script for the chosen
container, or to a configuration file used by the startup script:

UNIX/Linux
TC_INSTALL_DIR=path/to/local/terracotta_home
TC_CONFIG_PATH=path/to/tc-config.xml
. ${TC_INSTALL_DIR}/platform/bin/dso-env.sh -q
export JAVA_OPTS="$JAVA_OPTS $TC_JAVA_OPTS"

Microsoft Windows
set TC_INSTALL_DIR=path\to\local\terracotta_home>
set TC_CONFIG_PATH=path\to\local\tc-config.xml
call %TC_INSTALL_DIR%\platform\bin\dso-env.bat -q
set JAVA_OPTS=%JAVA_OPTS% %TC_JAVA_OPTS%

The following table lists suggested container script files to use:

NOTE: JAVA_OPTIONS and JAVA_OPTS

Your container may use JAVA_OPTIONS instead of JAVA_OPTS.

For This Container
Add Terracotta Configuration to

this File
Notes

GlassFish

GlassFish uses a multi-step process for starting the application server instances. To ensure that Terracotta
runs in the same JVM as the application server, add these startup flags to the GlassFish domain.xml (found
under the domains/<your_domain>/config directory):

<jvm-options>-Dcom.sun.enterprise.server.ss.ASQuickStartup=false</jvm-options>
<jvm-options>-Dtc.config=<path/to/Terracotta_configuration_file></jvm-options>
<jvm-options>-Dtc.install-root=<path/to/Terracotta_home></jvm-options>
<jvm-options>-Xbootclasspath/p:<path/to/DSO_boot_jar></jvm-options>

The last JVM option contains a boot-jar path. Run the following command from ${TERRACOTTA_HOME} on
one of the application servers to find the boot-jar path:

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

155 of 162 2011-06-03 11:26

UNIX/Linux
[PROMPT] platform/bin/make-boot-jar.sh

Microsoft Windows
[PROMPT] platform\bin\make-boot-jar.bat

You should see output similar to the following (shown for Linux):

2009-06-24 09:43:54,961 INFO - Configuration loaded from the file at '/Users/local/terracotta-3.0.0/tc-
config.xml'.
Creating boot JAR at '/Users/local/terracotta-3.0.0/platform/bin/../lib/dso-boot/dso-
boot-hotspot_linux_150_16.jar...
Successfully created boot JAR file at '/Users/local/terracotta-3.0.0/platform/bin/../lib/dso-boot/dso-
boot-hotspot_linux_150_16.jar'.

Note the relative path given, which in this example is /Users/local/terracotta-3.0.0/platform
/bin/../lib/dso-boot/dso-boot-hotspot_linux_150_16.jar . The inferred path, /Users
/local/terracotta-3.0.0/lib/dso-boot/dso-boot-hotspot_linux_150_16.jar is
needed for the value of the domain.xml element <jvm-options>-Xbootclasspath/p:<path/to
/DSO_boot_jar></jvm-options> .

TIP: Using Startup Flags in domain.xml

domain.xml uses <jvm-options> elements to pass the required flags. You can add other startup flags,
such as -Dcom.tc.session.cookie.domain , to domain.xml .

If the setup on your application servers is the same, you can use the path output from one application server
to configure the others. However, If the setup on your application servers varies, you may have to run
make-boot-jar on each application server to find the appropriate path.

For example, an installation on Linux where clients received their configuration from a server could use
startup flags similar to the following:

<jvm-options>-Dcom.sun.enterprise.server.ss.ASQuickStartup=false</jvm-options>
<jvm-options>-Dtc.config=server1:9510</jvm-options>
<jvm-options>-Dtc.install-root=/myHome/tc3.0</jvm-options>
<jvm-options>-Xbootclasspath/p:/myHome/tc3.0/lib/dso-boot/dso-boot-hotspot_linux_160_06.jar</jvm-options>

9.1.2d Clustering a Web Application with Terracotta Web Sessions

To cluster a web application, you must add the following <web-applications> subsection to the <application>
section of tc-config.xml :

<!-- The application section is at the same level as the servers and clients sections. -->
<application>
...
 <web-applications>
 <web-application>myWebApp</web-application>
 </web-applications>
...
</application>

The value of <web-application> is the application context root or the name of the application’s WAR file.

9.1.3 Step 2: Configure Terracotta Products
The following sections show you how to configure the following Terracotta products:

Enterprise Ehcache Configuration
Enterprise Ehcache for Hibernate Configuration
Quartz Scheduler Configuration
Web Sessions Configuration

9.1.3a Enterprise Ehcache Configuration

Each instance of the distributed cache must have an Ehcache configuration file. The Ehcache configuration
file, ehcache.xml by default, should be on your application's classpath. If you are using a WAR file, add
the Ehcache configuration file to WEB-INF/classes or to a JAR file that is included in WEB-INF/lib .

TIP: Distributed Ehcache for Hibernate

Terracotta Distributed Ehcache for Hibernate also uses ehcache.xml .

Sample Ehcache Configuration File

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

156 of 162 2011-06-03 11:26

The Ehcache configuration file configures the caches that you want to cluster. The following is a sample
ehcache.xml file:

<ehcache xsi:noNamespaceSchemaLocation="ehcache.xsd" name="myCacheMan">
 <defaultCache maxElementsInMemory="10000" eternal="false"
 timeToIdleSeconds="120" timeToLiveSeconds="120" overflowToDisk="true"
 diskSpoolBufferSizeMB="30" maxElementsOnDisk="10000000"
 diskPersistent="false" diskExpiryThreadIntervalSeconds="120"
 memoryStoreEvictionPolicy="LRU"/>
 <cache name="foo" maxElementsInMemory="1000"
 maxElementsOnDisk="10000" eternal="false" timeToIdleSeconds="3600"
 timeToLiveSeconds="0" memoryStoreEvictionPolicy="LFU">
 <!-- Adding the element <terracotta /> turns on Terracotta clustering for the cache "foo". -->
 <terracotta clustered="true" valueMode="identity"/>
 </cache>
</ehcache>

NOTE: Understanding the Cache Mode (valueMode)

The <terracotta> element's valueMode attribute sets the cache mode to serialization or identity. Before
choosing a cache mode, be sure to understand the functions, effects, and requirements of serialization and
identity modes. See Comparing Serialization and Identity Modes for more information.

Using the Cache in Your Application

In your application, the distributed cache is set up by creating the CacheManager, which references the
Ehcache configuration file. There are a number of ways to have your application locate the Ehcache
configuration file, some of which have been noted above.

The following example code shows how to use the cache configured in the ehcache.xml file shown above:

 import net.sf.ehcache.CacheManager;
 import net.sf.ehcache.Cache;
 import net.sf.ehcache.Element;
 // Look up cache manager and cache. This assumes that the app can find the
 // Ehcache configuration file. Note that "foo" in getEhcache() corresponds to
 // name given to a cache block in the Ehcache configuration file.
 CacheManager cacheManager = new CacheManager();
 Cache cache = cacheManager.getEhcache("foo");
 // Put element in cache
 cache.put(new Element("key", "value"));
 // Get element from cache
 Element element = cache.get("key");

As an option to using the Ehcache configuration file, you can also create the cache programmatically:

 public Cache(String name,
 int maxElementsInMemory,
 MemoryStoreEvictionPolicy memoryStoreEvictionPolicy,
 boolean eternal,
 long timeToLiveSeconds,
 long timeToIdleSeconds,
 int maxElementsOnDisk,
 boolean isTerracottaClustered,
 String terracotta ValueMode)

For more information on the Ehcache configuration file, instantiating the CacheManager, and programmatic
approaches see the Ehcache documentation .

Incompatible Configuration

Do not use the element <terracottaConfig> in ehcache.xml .

For any clustered cache, you cannot use configuration elements that are incompatible when clustering with
Terracotta. Clustered caches have a <terracotta> element.

The following Ehcache configuration attributes or elements should not be used in clustered caches:

DiskStore-related attributes overflowToDisk , overflowToOffHeap , and diskPersistent
.
The Terracotta server automatically provides a disk store.
Replication-related configuration elements, such as <cacheManagerPeerProviderFactory>,
<cacheManagerPeerListenerFactory>, <bootstrapCacheLoaderFactory>, <cacheEventListenerFactory>.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

157 of 162 2011-06-03 11:26

When a change occurs in a Terracotta cluster, all nodes that have the changed element or object are
automatically updated. Unlike the replication methods used to cluster Ehcache, cache event listeners
are not (and do not need to be) notified of remote changes. Listeners are still aware of local changes.
Replication-related attributes such as replicateAsynchronously and replicatePuts .

If you use the attribute MemoryStoreEvictionPolicy , it must be set to either LFU or LRU. Setting
MemoryStoreEvictionPolicy to FIFO causes the error IllegalArgumentException .

9.1.3b Enterprise Ehcache for Hibernate Configuration

Each instance of the distributed second-level cache for Hibernate must have an Ehcache configuration file.
The Ehcache configuration file, ehcache.xml by default, should be on your application's classpath. If you
are using a WAR file, add the Ehcache configuration file to WEB-INF/classes or to a JAR file that is
included in WEB-INF/lib .

TIP: Distributed Ehcache

Terracotta Distributed Ehcache also uses ehcache.xml .

See Incompatible Configuration for configuration elements that must be avoided.

Sample Ehcache Configuration File

Create a basic Ehcache configuration file, ehcache.xml by default:

<?xml version="1.0" encoding="UTF-8"?>
<ehcache name="myCache"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="ehcache.xsd">
 <defaultCache
 maxElementsInMemory="0"
 eternal="false"
 timeToIdleSeconds="1200"
 timeToLiveSeconds="1200">
 <terracotta />
 </defaultCache>
</ehcache>

This defaultCache configuration includes Terracotta clustering. The Terracotta client must load the
configuration from a file or a Terracotta server.

TIP:Terracotta C lients and Servers

In a Terracotta cluster, the application server is also known as the client.

The source of the Terracotta client configuration is specified in the application server (see TIMs for
Integrating an Application Server). It can also be specified on the command line when the application is
started using the tc.Config property. For example:

-Dtc.Config=localhost:9510

Cache-Specific Configuration

Using an Ehcache configuration file with only a defaultCache configuration means that every cached
Hibernate entity is cached with the settings of that defaultCache. You can create specific cache
configurations for Hibernate entities using <cache> elements.

For example, add the following <cache> block to ehcache.xml to cache a Hibernate entity that has been
configured for caching (see Step 3: Prepare Your Application for Caching):

<cache name="com.my.package.Foo" maxElementsInMemory="1000"
 maxElementsOnDisk="10000" eternal="false" timeToIdleSeconds="3600"
 timeToLiveSeconds="0" memoryStoreEvictionPolicy="LFU">
 <!-- Adding the element <terracotta /> turns on Terracotta clustering for the cache Foo. -->
 <terracotta />
</cache>

You can edit the eviction settings in the defaultCache and any other caches that you configure in
ehcache.xml to better fit your application’s requirements.

Enabling Second-Level Cache in Hibernate

You must also enable the second-level cache and specify the provider in the Hibernate configuration. For
more information, see Hibernate Configuration File.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

158 of 162 2011-06-03 11:26

9.1.3c Quartz Scheduler Configuration

Quartz is configured programmatically or by a Quartz configuration file (quartz.properties by
default). If no configuration is provided, a default configuration is loaded. The following shows the contents
of the default configuration file:

Default Properties file for use by StdSchedulerFactory
to create a Quartz Scheduler Instance, if a different
properties file is not explicitly specified.
#

org.quartz.scheduler.instanceName = DefaultQuartzScheduler
org.quartz.scheduler.rmi.export = false
org.quartz.scheduler.rmi.proxy = false
org.quartz.scheduler.wrapJobExecutionInUserTransaction = false

org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount = 10
org.quartz.threadPool.threadPriority = 5
org.quartz.threadPool.threadsInheritContextClassLoaderOfInitializingThread = true

org.quartz.jobStore.misfireThreshold = 60000

org.quartz.jobStore.class = org.quartz.simpl.RAMJobStore

To cluster with Terracotta, you must edit the property org.quartz.jobStore.class to specify the
Terracotta Job Store for Quartz instead of org.quartz.simpl.RAMJobStore :

org.quartz.jobStore.class = org.terracotta.quartz.TerracottaJobStore

The Quartz configuration file must be on your application's classpath. If you are using a WAR file, add the
Quartz configuration file to WEB-INF/classes or to a JAR file that is included in WEB-INF/lib . For
more information on configuring Quartz, including use of the Quartz API, see the Quartz documentation at
http://www.quartz-scheduler.org .

9.1.3d Web Sessions Configuration

Clustered sessions are configured from tc-config.xml . For more on the <web-applications> section of
tc-config.xml , see the Terracotta Configuration Guide and Reference .

9.1.4 Step 3: Install the TIMs
The TIMs specified in tc-config.xml must be installed on each Terracotta client. If you are using
Ehcache or Quartz, TIMs associated with Ehcache or Quartz must be added to your application’s classpath.

Install the TIM JAR files using the following command:

Unix/linux
${TERRACOTTA_HOME}/bin/tim-get.sh install-for path/to/tc-config.xml

MICROSOFT WINDOWS
${TERRACOTTA_HOME}\bin\tim-get.bat install-for path\to\tc-config.xml

Be sure to target the Terracotta configuration file you modified with the TIM <module> elements. tim-get
will print a status for each TIM it attempts to install as well as all dependencies.

For example, if you added TIMs for Ehcache 2.0.0 and Tomcat 6.0, output similar to the following should
appear:

Parsing module: tim-ehcache-2.0:latest
Parsing module: tim-tomcat-6.0:latest
Installing tim-ehcache-2.0 1.5.1 and dependencies...
 INSTALLED: tim-ehcache-2.0 1.5.1 - Ok
 INSTALLED: terracotta-toolkit-1.0 1.0.0 - Ok
 INSTALLED: tim-ehcache-2.0-hibernate-ui 1.5.1 - Ok
Installing tim-tomcat-6.0 2.1.1 and dependencies...
 INSTALLED: tim-tomcat-6.0 2.1.1 - Ok
 INSTALLED: tim-tomcat-5.5 2.1.1 - Ok
 INSTALLED: tim-tomcat-common 2.1.1 - Ok
 SKIPPED: tim-session-common 2.1.1 - Already installed
 SKIPPED: terracotta-toolkit-1.0 1.0.0 - Already installed

Done.

Of the TIMs shown for the Ehcache 2.0 portion of the tim-get output, the following must be added to your

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

159 of 162 2011-06-03 11:26

application’s classpath:

tim-ehcache-2.0
terracotta-toolkit-<API version> or terracotta-toolkit-<API version>-ee

For Quartz Scheduler, the TIMs that must be added to the application’s classpath are:

tim-quartz-<version>
terracotta-toolkit-<API version> or terracotta-toolkit-<API version>-ee

where <version> is the version of Quartz Scheduler.

If you are clustering sessions, there is no explicit requirement for placing container or sessions-related TIMs
on the classpath.

If you install both open-source TIMs and Enterprise Edition TIMs, then you must specify both types of
Terracotta Toolkit JARs in the Terracotta configuration file. For example, if you want to install
tim-tomcat-6.0 and tim-ehcache-2.x-ee , then specify the following:

<modules>
 <module group-id="org.terracotta.toolkit" name="terracotta-toolkit-1.2" />
 <module group-id="org.terracotta.toolkit" name="terracotta-toolkit-1.2-ee" />
 <module name="tim-tomcat-6.0" />
 <module name="tim-ehcache-2.x-ee" />
<!-- Other TIMs here. -->
</modules>

The Terracotta Toolkit API version available for your Terracotta kit may be different than the one shown in
this example.

9.1.4a Location of TIMs

Generally, TIMs are found on the following path:

${TERRACOTTA_HOME}/platform/modules/org/terracotta/modules/tim-<name>-<version>/<TIM-version>
/tim-<name>-<version>-<TIM-version>.jar

where <name> is the name of the technology being integrated, and <version> is the version of that
technology (if applicable). For example, the path to the TIM for Ehcache 2.0, which in this example has the
TIM version 1.5.1, is as shown:

${TERRACOTTA_HOME}/platform/modules/org/terracotta/modules/tim-ehcache-2.0/1.5.1/tim-ehcache-
2.0-1.5.1.jar

The Terracotta Toolkit (terracotta-toolkit) is found in:

${TERRACOTTA_HOME}/platform/modules/org/terracotta/toolkit/terracotta-toolkit-1.0/1.0.0/terracotta-
toolkit-1.0-1.0.0.jar

9.1.5 Step 4: Start the Cluster

1. Start the Terracotta server:

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/start-tc-server.sh &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\start-tc-server.bat

2. Start the application servers.
3. Start the Terracotta Developer Console:

UNIX/Linux
[PROMPT] ${TERRACOTTA_HOME}/bin/dev-console.sh &

Microsoft Windows
[PROMPT] ${TERRACOTTA_HOME}\bin\dev-console.bat

4. Connect to the Terracotta cluster.
Click Connect... in the Terracotta Developer Console.

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

160 of 162 2011-06-03 11:26

5. Click the Topology node in the cluster navigation window to see the Terracotta servers and clients
(application servers) in the Terracotta cluster.

6. If you are clustering Ehcache or Ehcache for Hibernate, click the My Application node in the cluster
navigation window to see panels for these products.
For example, if you are clustering Ehcache, click the Ehcache node in the cluster navigation window
to see the caches in the Terracotta cluster.

9.1.6 Quartz Scheduler DSO Installation
Quartz Scheduler Where is an Enterprise feature that allows jobs and triggers to be run on specified
Terracotta clients instead of randomly chosen ones. For more information on the Quartz Scheduler Where
locality API, see 4.2.1 Quartz Scheduler Where (Locality API).

DSO users must install tim-quartz-2.0-ee. First, add the TIM to your Terracotta configuration file (
tc-config.xml by default):

...
<clients>
 ...
 <modules>
 <module name="tim-quartz-2.0-ee" />

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

161 of 162 2011-06-03 11:26

 ...
 </modules>
 ...
</clients>
...

To install the TIMs declared in the Terracotta configuration file, use the following command:

UNIX/Linux
${TERRACOTTA_HOME}/bin/tim-get.sh install-for /path/to/tc-config.xml

Use tim-get.bat with Microsoft Windows.

Top of Page

Terracotta 3.5.0 Documentation http://www.terracotta.org/documentation/produc...

162 of 162 2011-06-03 11:26

